scispace - formally typeset
Search or ask a question
Topic

Polymer nanocomposite

About: Polymer nanocomposite is a research topic. Over the lifetime, 8977 publications have been published within this topic receiving 297599 citations.


Papers
More filters
Journal ArticleDOI
Ye Liu1, Ying Li1, Guang Yang1, Xiaotong Zheng1, Shaobing Zhou1 
TL;DR: It is found that the PEG[60]-PCL[40]-CNC[10] nanocomposite exhibited excellent thermo-induced and water-induced shape-memory effects in water at 37 °C (close to body temperature), and the introduction of CNC clearly improved the mechanical properties of the mixture of both PEG and PCL polymers with low molecular weights.
Abstract: In this study, we developed a thermoresponsive and water-responsive shape-memory polymer nanocomposite network by chemically cross-linking cellulose nanocrystals (CNCs) with polycaprolactone (PCL) and polyethylene glycol (PEG). The nanocomposite network was fully characterized, including the microstructure, cross-link density, water contact angle, water uptake, crystallinity, thermal properties, and static and dynamic mechanical properties. We found that the PEG[60]–PCL[40]–CNC[10] nanocomposite exhibited excellent thermo-induced and water-induced shape-memory effects in water at 37 °C (close to body temperature), and the introduction of CNC clearly improved the mechanical properties of the mixture of both PEG and PCL polymers with low molecular weights. In addition, Alamar blue assays based on osteoblasts indicated that the nanocomposites possessed good cytocompatibility. Therefore, this thermoresponsive and water-responsive shape-memory nanocomposite could be potentially developed into a new smart bioma...

180 citations

Journal ArticleDOI
TL;DR: To achieve uniform distribution of carbon nanotubes within the polymer, an optimized dispersion process was developed, featuring a strong organic solvent—chloroform, which dissolved PDMS base polymer easily and allowed high quality dispersion of MWCNTs.
Abstract: The polymer nanocomposite used in this work comprises elastomer poly(dimethylsiloxane) (PDMS) as a polymer matrix and multi-walled carbon nanotubes (MWCNTs) as a conductive nanofiller. To achieve uniform distribution of carbon nanotubes within the polymer, an optimized dispersion process was developed, featuring a strong organic solvent-chloroform, which dissolved PDMS base polymer easily and allowed high quality dispersion of MWCNTs. At concentrations as high as 9 wt.%, MWCNTs were dispersed uniformly through the polymer matrix, which presented a major improvement over prior techniques. The dispersion procedure was optimized via extended experimentation, which is discussed in detail.

179 citations

Journal ArticleDOI
TL;DR: In this paper, different surface modification strategies for hexagonal boron nitride (h-BN) nanomaterials were discussed including various covalent and non-covalent surface modifications through wet or dry chemical routes.
Abstract: Hexagonal boron nitride (h-BN) nanomaterials, such as boron nitride nanotubes, boron nitride nanofibers, and boron nitride nanosheets, are among the most promising inorganic nanomaterials in recent years. Their unique properties, including high mechanical stiffness, wide band gap, excellent thermal conductivity, and thermal stability, suggest many potential applications in various engineering fields. In particular, h-BN nanomaterials have been widely used as functional fillers to fabricate high-performance polymer nanocomposites. Like other nanomaterials, prior to their utilization in nanocomposites, surface modification of h-BNs is often necessary in order to prevent their strong tendency to aggregate, and to improve their dispersion and interfacial properties in polymer nanocomposites. However, the high chemical inertness and resistance to oxidation of h-BNs make it rather difficult to functionalize h-BNs. The methods frequently used to oxidize graphitic carbon nanomaterials are not quite successful on h-BNs. Therefore, many novel approaches have been studied to modify h-BN nanostructures. In this review, different surface modification strategies were discussed including various covalent and non-covalent surface modification strategies through wet or dry chemical routes. Meanwhile, the effects of these surface modification methods on the resulting material structures and properties were also reviewed. At last, a number of theoretical studies on the reactivity of h-BNs with different chemical agents have been conducted to explore new surface modification routes, which were also addressed in this review.

179 citations

Journal ArticleDOI
19 Jun 2017
TL;DR: In recent years, polymer nanocomposites (PNCs) have attracted the attention of scientists and technologists in water purification due to improved processability, surface area, stability, and tunable properties as discussed by the authors.
Abstract: In recent years, polymer nanocomposites (PNCs) have attracted the attention of scientists and technologists in water purification due to improved processability, surface area, stability, tunable pr...

179 citations

Journal ArticleDOI
12 Aug 2013-Small
TL;DR: A method is suggested to obtain noncovalently functionalized BNNFs with 1-pyrenebutyric acid (PBA) molecules and to synthesize epoxy-BNNF nanocomposites with enhanced mechanical properties and the toughening enhancement is as high as 107% compared to the value of neat epoxy.
Abstract: The influence of surface modifications on the mechanical properties of epoxy-hexagonal boron nitride nanoflake (BNNF) nanocomposites is investigated. Homogeneous distributions of boron nitride nanoflakes in a polymer matrix, preserving intrinsic material properties of boron nitride nanoflakes, is the key to successful composite applications. Here, a method is suggested to obtain noncovalently functionalized BNNFs with 1-pyrenebutyric acid (PBA) molecules and to synthesize epoxy-BNNF nanocomposites with enhanced mechanical properties. The incorporation of noncovalently functionalized BNNFs into epoxy resin yields an elastic modulus of 3.34 GPa, and 71.9 MPa ultimate tensile strength at 0.3 wt%. The toughening enhancement is as high as 107% compared to the value of neat epoxy. The creep strain and the creep compliance of the noncovalently functionalized BNNF nanocomposite is significantly less than the neat epoxy and the nonfunctionalized BNNF nanocomposite. Noncovalent functionalization of BNNFs is effective to increase mechanical properties by strong affinity between the fillers and the matrix.

178 citations


Network Information
Related Topics (5)
Carbon nanotube
109K papers, 3.6M citations
92% related
Polymerization
147.9K papers, 2.7M citations
89% related
Graphene
144.5K papers, 4.9M citations
89% related
Oxide
213.4K papers, 3.6M citations
86% related
Thin film
275.5K papers, 4.5M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023165
2022391
2021661
2020726
2019630
2018674