scispace - formally typeset
Search or ask a question
Topic

Polymer nanocomposite

About: Polymer nanocomposite is a research topic. Over the lifetime, 8977 publications have been published within this topic receiving 297599 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that spherical nanoparticles uniformly grafted with macromolecules ('nanoparticle amphiphiles') robustly self-assemble into a variety of anisotropic superstructures when they are dispersed in the corresponding homopolymer matrix.
Abstract: It is easy to understand the self-assembly of particles with anisotropic shapes or interactions (for example, cobalt nanoparticles or proteins) into highly extended structures. However, there is no experimentally established strategy for creating a range of anisotropic structures from common spherical nanoparticles. We demonstrate that spherical nanoparticles uniformly grafted with macromolecules ('nanoparticle amphiphiles') robustly self-assemble into a variety of anisotropic superstructures when they are dispersed in the corresponding homopolymer matrix. Theory and simulations suggest that this self-assembly reflects a balance between the energy gain when particle cores approach and the entropy of distorting the grafted polymers. The effectively directional nature of the particle interactions is thus a many-body emergent property. Our experiments demonstrate that this approach to nanoparticle self-assembly enables considerable control for the creation of polymer nanocomposites with enhanced mechanical properties. Grafted nanoparticles are thus versatile building blocks for creating tunable and functional particle superstructures with significant practical applications.

942 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss various assembly techniques available for effectively incorporating the strong and flexible graphene-based components into polymer matrices by utilization of weak and strong interfacial interactions available in functionalized graphene sheets.

918 citations

Journal ArticleDOI
01 Aug 2003-Polymer
TL;DR: In this article, the effect of incomplete exfoliation of simple stacks of layered aluminosilicates on nanocomposite modulus was examined using the composite theories of Halpin-Tsai and Mori-Tanaka.

909 citations

Journal ArticleDOI
TL;DR: In this paper, a multi-core model with the far-distance effect, which is closely related to an "interaction zones", has been proposed from consideration of mesoscopic analysis of electrical and chemical structures of an existing interface with finite thickness.
Abstract: Polymer nanocomposites possess promising high performances as engineering materials, if they are prepared and fabricated properly. Some work has been recently done on such polymer nanocomposites as dielectrics and electrical insulation. This was reviewed in 2004 based on the literatures published up to 2003. New significant findings have been added since then. Furthermore, a multi-core model with the far-distance effect, which is closely related to an "interaction zones", has been proposed from consideration of mesoscopic analysis of electrical and chemical structures of an existing interface with finite thickness. It is speculatively examined in the paper how the model works for various properties and phenomena already found in nanocomposites as dielectrics focusing on electrical characteristics, resistance to high voltage environment, and thermal properties.

903 citations

Journal ArticleDOI
TL;DR: In this article, the future of mesoscopic properties of nanocomposite polymers is discussed, and several interesting results to indicate the foreseeable future have been revealed, some of which are described on materials and processing, together with basic concepts and future direction.
Abstract: Polymer nanocomposites are defined as polymers in which small amounts of nanometer size fillers are homogeneously dispersed by only several weight percentages. Addition of just a few weight percent of the nanofillers has profound impact on the physical, chemical, mechanical and electrical properties of polymers. Such change is often favorable for engineering purpose. This nanocomposite technology has emerged from the field of engineering plastics, and potentially expanded its application to structural materials, coatings, and packaging to medical/biomedical products, and electronic and photonic devices. Recently these 'hi-tech' materials with excellent properties have begun to attract research people in the field of dielectrics and electrical insulation. Since new properties are brought about from the interactions of nanofillers with polymer matrices, mesoscopic properties are expected to come out, which would be interesting to both scientists and engineers. Improved characteristics are. expected as dielectrics and electrical insulation. Several interesting results to indicate the foreseeable future have been revealed, some of which are described on materials and processing in the paper together with basic concepts and future direction.

889 citations


Network Information
Related Topics (5)
Carbon nanotube
109K papers, 3.6M citations
92% related
Polymerization
147.9K papers, 2.7M citations
89% related
Graphene
144.5K papers, 4.9M citations
89% related
Oxide
213.4K papers, 3.6M citations
86% related
Thin film
275.5K papers, 4.5M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023165
2022391
2021661
2020726
2019630
2018674