scispace - formally typeset
Search or ask a question
Topic

Polymer nanocomposite

About: Polymer nanocomposite is a research topic. Over the lifetime, 8977 publications have been published within this topic receiving 297599 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new class of dielectric materials, called organic-inorganic hybrid materials, is described, which are prepared from the covalent incorporation of tantalum species into ferroelectric polymers via in situ sol-gel condensation.
Abstract: The ever-increasing demand for compact electronics and electrical power systems cannot be met with conventional dielectric materials with limited energy densities. Numerous efforts have been made to improve the energy densities of dielectrics by incorporating ceramic additives into polymer matrix. In spite of increased permittivities, thus-fabricated polymer nanocomposites typically suffer from significantly decreased breakdown strengths, which preclude a substantial gain in energy density. Herein, organic–inorganic hybrids as a new class of dielectric materials are described, which are prepared from the covalent incorporation of tantalum species into ferroelectric polymers via in situ sol-gel condensation. The solution-processed hybrid with the optimal composition exhibits a Weibull breakdown strength of 505 MV m−1 and a discharged energy density of 18 J cm−3, which are more than 40% and 180%, respectively, greater than the pristine ferroelectric polymer. The superior performance is mainly ascribed to the deep traps created in the hybrids at the molecular level, which results in reduced electric conduction and lower remnant polarization. Simultaneously, the formation of the cross-linked networks enhances the mechanical strengths of the hybrid films and thus hinders the occurrence of the electromechanical breakdown. This work opens up new opportunities to solution-processed organic materials with high energy densities for capacitive electrical energy storage.

139 citations

Journal ArticleDOI
TL;DR: In this paper, a review of composites based on carbon fillers is presented to illustrate the detailed exploitation of various polymer nanocomposites in addition to especially mentioned epoxy composites.

138 citations

Journal ArticleDOI
TL;DR: In this paper, the synergistic effect of multi walled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) in regulating the sensitivity of the naturally occurring elastomer, natural rubber (NR).
Abstract: Utilizing the electrical properties of polymer nanocomposites is an important strategy to develop high performance solvent sensors. Here we report the synergistic effect of multi walled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) in regulating the sensitivity of the naturally occurring elastomer, natural rubber (NR). Composites were fabricated by dispersing CNTs alone and together with exfoliated RGO sheets (thermally reduced at temperatures of 200 and 600 °C ) in NR by a solution blending method. RGO exfoliation and the uniform distribution of fillers in the composites were studied by atomic force microscopy, Fourier transformation infrared spectroscopy, X-ray diffraction, transmission electron microscopy and Raman spectroscopy. The solvent sensitivity of the composite samples was noted from the sudden variation in electrical conductivity which was due to the breakdown of the filler networks during swelling in different solvents. It was found that the synergy between CNTs and RGO exfoliated at 200 °C imparts maximum sensitivity to NR in recognizing the usually used aromatic laboratory solvents. Mechanical and dynamic mechanical studies reveal efficient filler reinforcement, depending strongly on the nature of filler–elastomer interactions and supports the sensing mechanism. Such interactions were quantitatively determined using the Maier and Goritz model from Payne effect experiments. It is concluded that the polarity induced by RGO addition reduces the interactions between CNTs and ultimately results in the solvent sensitivity.

138 citations

Journal ArticleDOI
TL;DR: In this paper, the incorporation of uniformly dispersed nanosheets into polymer matrix as charge-blocking barrier paves a way to significant reduction of conduction loss in high temperature dielectrics.

137 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a simple melt-compounding method for the fabrication of silica/polymer nanocomposites, wherein silica nanoparticles without surface modification were dispersed through the breakdown of loose agglomerates of colloidal nano-silica spheres in a kneaded polymer melt.
Abstract: Many attempts have been made to fabricate various types of inorganic nanoparticle-filled polymers (filler/polymer nanocomposites) by a mechanical or chemical approach. However, these approaches require modification of the nanofiller surfaces and/or complicated polymerization reactions, making them unsuitable for industrial-scale production of the nanocomposites. The author and coworkers have proposed a simple melt-compounding method for the fabrication of silica/polymer nanocomposites, wherein silica nanoparticles without surface modification were dispersed through the breakdown of loose agglomerates of colloidal nano-silica spheres in a kneaded polymer melt. This review aims to discuss experimental techniques of the proposed method and its advantages over other developed methods.

137 citations


Network Information
Related Topics (5)
Carbon nanotube
109K papers, 3.6M citations
92% related
Polymerization
147.9K papers, 2.7M citations
89% related
Graphene
144.5K papers, 4.9M citations
89% related
Oxide
213.4K papers, 3.6M citations
86% related
Thin film
275.5K papers, 4.5M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023165
2022391
2021661
2020726
2019630
2018674