scispace - formally typeset
Search or ask a question
Topic

Polyoxometalate

About: Polyoxometalate is a research topic. Over the lifetime, 3493 publications have been published within this topic receiving 94123 citations. The topic is also known as: POM.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a mesoporous iron trimesate MIL-100(Fe) sample was used to encapsulate polyoxometalate (POM) within the framework of a MOF.
Abstract: Successful encapsulation of polyoxometalate (POM) within the framework of a mesoporous iron trimesate MIL-100(Fe) sample has been achieved by direct hydrothermal synthesis in the absence of fluorine. XRPD, 31P MAS NMR, IR, EELS, TEM and 57Fe Mossbauer spectrometry corroborate the insertion of POM within the cavities of the MOF. The experimental Mo/Fe ratio is 0.95, in agreement with the maximum theoretical amount of POM loaded within the pores of MIL-100(Fe), based on steric hindrance considerations. The POM-MIL-100(Fe) sample exhibits a pore volume of 0.373 cm3 g−1 and a BET surface area close to 1000 m2 g−1, indicating that small gas molecules can easily diffuse inside the cavities despite the presence of heavy phosphomolybdates. These latter contribute to the decrease in the overall surface area, due to the increase in molar weight, by 65%. Moreover, the resulting Keggin containing MIL-100(Fe) solid is stable in aqueous solution with no POM leaching even after more than 2 months. In addition, no exchange of the Keggin anions by tetrabutylammonium perchlorate in organic media has been observed.

252 citations

Journal ArticleDOI
TL;DR: Significant structural differences in the [MnIII4MnII2O4(H2O)4]8+ cluster core of the X=SiIV analogue modify the magnetic properties, thereby illustrating how polyoxometalate ligands can help in the systematic construction of nanoscale magnets.
Abstract: Last night of the POMs: The title compound (X=GeIV) exhibits slow relaxation of magnetization and quantum tunneling with a single-molecule magnetic behavior. Significant structural differences in the [MnIII4MnII2O4(H2O)4]8+ cluster core of the X=SiIV analogue modify the magnetic properties, thereby illustrating how polyoxometalate (POM) ligands can help in the systematic construction of nanoscale magnets.

249 citations

Journal ArticleDOI
TL;DR: The targeted design and simulation of a new family of zeolitic metal-organic frameworks (MOFs) based on benzenedicarboxylate as the ligand and epsilon-type Keggin polyoxometalates (POMs) as building units, named here Z-POMOFs, have been performed, and the cristobalite-like structure was predicted to be the most stable structure.
Abstract: The targeted design and simulation of a new family of zeolitic metal-organic frameworks (MOFs) based on benzenedicarboxylate (BDC) as the ligand and epsilon-type Keggin polyoxometalates (POMs) as building units, named here Z-POMOFs, have been performed. A key feature is the use of the analogy between the connectivity of silicon in dense minerals and zeolites with that of the epsilon-type Keggin POMs capped with Zn(II) ions. Handling the epsilon-Keggin as a building block, a selection of 21 zeotype structures, together with a series of dense minerals were constructed and their relative stabilities computed. Among these Z-POMOFs, the cristobalite-like structure was predicted to be the most stable structure. This prediction has been experimentally validated by the targeted synthesis of the first experimental Z-POMOF structure, which was strikingly found to possess the cristobalite topology, with three interpenetrated networks. Crystals of [NBu(4)](3)[PMo(V)(8)Mo(VI)(4)O(36)(OH)(4)Zn(4)(BDC)(2)].2H(2)O (Z-POMOF1) have been isolated under hydrothermal conditions from the reduction of ammonium heptamolybdate in the presence of phosphorous acid and Zn(II) ions. Tetrabutylammonium cations play the role of counterions and space-filling agents in this tridimensional interpenetrated framework. Moreover, the electrochemistry of the epsilon-Keggin POM is maintained and can be exploited in the insoluble Z-POMOF1 framework, as demonstrated by the electrocatalytic reduction of bromate.

249 citations

Journal ArticleDOI
TL;DR: Multiple experimental results confirm that the polyanion unit (1-V2) itself is the dominant active catalyst and not Co(2+)(aq) or cobalt oxide.
Abstract: An all-inorganic, oxidatively and thermally stable, homogeneous water oxidation catalyst based on redox-active (vanadate(V)-centered) polyoxometalate ligands, Na10[Co4(H2O)2(VW9O34)2]·35H2O (Na101-V2, sodium salt of the polyanion 1-V2), was synthesized, thoroughly characterized and shown to catalyze water oxidation in dark and visible-light-driven conditions. This synthetic catalyst is exceptionally fast under mild conditions (TOF > 1 × 103 s–1). Under light-driven conditions using [Ru(bpy)3]2+ as a photosensitizer and persulfate as a sacrificial electron acceptor, 1-V2 exhibits higher selectivity for water oxidation versus bpy ligand oxidation, the final O2 yield by 1-V2 is twice as high as that of using [Co4(H2O)2(PW9O34)2]10– (1-P2), and the quantum efficiency of O2 formation at 6.0 μM 1-V2 reaches ∼68%. Multiple experimental results (e.g., UV–vis absorption, FT-IR, 51V NMR, dynamic light scattering, tetra-n-heptylammonium nitrate-toluene extraction, effect of pH, buffer, and buffer concentration, etc....

246 citations


Network Information
Related Topics (5)
Catalysis
400.9K papers, 8.7M citations
91% related
Alkyl
223.5K papers, 2M citations
87% related
Photocatalysis
67K papers, 2.1M citations
87% related
Crystal structure
100.9K papers, 1.5M citations
87% related
Cyclic voltammetry
55.9K papers, 1.4M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023246
2022566
2021213
2020218
2019187
2018216