scispace - formally typeset
Search or ask a question
Topic

Porites compressa

About: Porites compressa is a research topic. Over the lifetime, 124 publications have been published within this topic receiving 14567 citations. The topic is also known as: Stony coral.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that the thermal tolerances of reef-building corals are likely to be exceeded every year within the next few decades, and suggests that unrestrained warming cannot occur without the loss and degradation of coral reefs on a global scale.
Abstract: Sea temperatures in many tropical regions have increased by almost 1 degrees C over the past 100 years, and are currently increasing at similar to 1-2 degrees C per century. Coral bleaching occurs when the thermal tolerance of corals and their photosynthetic symbionts (zooxanthellae) is exceeded. Mass coral bleaching has occurred in association with episodes of elevated sea temperatures over the past 20 years and involves the loss of the zooxanthellae following chronic photoinhibition. Mass bleaching has resulted in significant losses of live coral in many parts of the world. This paper considers the biochemical, physiological and ecological perspectives of coral bleaching. It also uses the outputs of four runs from three models of global climate change which simulate changes in sea temperature and hence how the frequency and intensity of bleaching events will change over the next 100 years. The results suggest that the thermal tolerances of reef-building corals are likely to be exceeded every year within the next few decades. Events as severe as the 1998 event, the worst on record, are likely to become commonplace within 20 years. Most information suggests that the capacity for acclimation by corals has already been exceeded, and that adaptation will be too slow to avert a decline in the quality of the world's reefs. The rapidity of the changes that are predicted indicates a major problem for tropical marine ecosystems and suggests that unrestrained warming cannot occur without the loss and degradation of coral reefs on a global scale.

3,627 citations

Journal ArticleDOI
TL;DR: Evaluated data on temperature and irradiance-induced bleaching, including long-term data sets which suggest that repeated bleaching events may be the consequence of a steadily rising background sea temperature that will in the future expose corals to an increasingly hostile environment, are evaluated.
Abstract: It has been over 10 years since the phenomenon of extensive coral bleaching was first described. In most cases bleaching has been attributed to elevated temperature, but other instances involving high solar irradiance, and sometimes disease, have also been documented. It is timely, in view of our concern about worldwide reef condition, to review knowledge of physical and biological factors involved in bleaching, the mechanisms of zooxanthellae and pigment loss, and the ecological consequences for coral communities. Here we evaluate recently acquired data on temperature and irradiance-induced bleaching, including long-term data sets which suggest that repeated bleaching events may be the consequence of a steadily rising background sea temperature that will in the future expose corals to an increasingly hostile environment. Cellular mechanisms of bleaching involve a variety of processes that include the degeneration of zooxanthellae in situ, release of zooxanthellae from mesenterial filaments and release of algae within host cells which become detached from the endoderm. Photo-protective defences (particularly carotenoid pigments) in zooxanthellae are likely to play an important role in limiting the bleaching response which is probably elicited by a combination of elevated temperature and irradiance in the field. The ability of corals to respond adaptively to recurrent bleaching episodes is not known, but preliminary evidence suggests that phenotypic responses of both corals and zooxanthellae may be significant.

1,431 citations

Journal ArticleDOI
TL;DR: A community-structural shift occurred on Okinawan reefs, resulting in an increase in the relative abundance of massive and encrusting coral species, and two hypotheses whose synergistic effect may partially explain observed mortality patterns are suggested.
Abstract: Sea surface temperatures were warmer throughout 1998 at Sesoko Island, Japan, than in the 10 preceding years. Temperatures peaked at 2.8 °C above average, resulting in extensive coral bleaching and subsequent coral mortality. Using random quadrat surveys, we quantitatively documented the coral community structure one year before and one year after the bleaching event. The 1998 bleaching event reduced coral species richness by 61% and reduced coral cover by 85%. Colony morphology affected bleaching vulnerability and subsequent coral mortality. Finely branched corals were most susceptible, while massive and encrusting colonies survived. Most heavily impacted were the branched Acropora and pocilloporid corals, some of which showed local extinction. We suggest two hypotheses whose synergistic effect may partially explain observed mortality patterns (i.e. preferential survival of thick-tissued species, and shape-dependent differences in colony mass-transfer efficiency). A community-structural shift occurred on Okinawan reefs, resulting in an increase in the relative abundance of massive and encrusting coral species.

1,327 citations

Journal ArticleDOI
22 Jul 2011-Science
TL;DR: Emerging evidence for variability in the coral calcification response to acidification, geographical variation in bleaching susceptibility and recovery, responses to past climate change, and potential rates of adaptation to rapid warming supports an alternative scenario in which reef degradation occurs with greater temporal and spatial heterogeneity than current projections suggest.
Abstract: Many physiological responses in present-day coral reefs to climate change are interpreted as consistent with the imminent disappearance of modern reefs globally because of annual mass bleaching events, carbonate dissolution, and insufficient time for substantial evolutionary responses. Emerging evidence for variability in the coral calcification response to acidification, geographical variation in bleaching susceptibility and recovery, responses to past climate change, and potential rates of adaptation to rapid warming supports an alternative scenario in which reef degradation occurs with greater temporal and spatial heterogeneity than current projections suggest. Reducing uncertainty in projecting coral reef futures requires improved understanding of past responses to rapid climate change; physiological responses to interacting factors, such as temperature, acidification, and nutrients; and the costs and constraints imposed by acclimation and adaptation.

1,031 citations

Journal ArticleDOI
27 Apr 2006-Nature
TL;DR: It is shown that the coral host has a significant role in recovery and resilience, and coral species with high-CHAR capability during bleaching and recovery, irrespective of morphology, will be more resilient to bleaching events over the long term and could become the dominant coral species on reefs.
Abstract: Elevated seawater temperatures are causing widespread coral bleaching and mortality, and threaten to damage some of these important ecosystems irreversibly. Bleaching occurs when the symbiotic microalgae that normally provide corals with food are released from the host coral, which then loses its pigment and appears almost white. Some corals survive bleaching, but the mechanisms that ensure survival are poorly understood. To date, studies have focused on the microalgae: the role of coral host physiology in bleaching and recovery has been largely overlooked. A study of bleached and recovering corals from Kaneohe Bay, Hawaii now shows that the host can have a significant role in coral recovery and resilience. Increased coral feeding on zooplankton can provide an alternative food source and dramatically enhance coral survival in bleaching events. Mass coral bleaching events caused by elevated seawater temperatures1,2 have resulted in extensive coral mortality throughout the tropics over the past few decades3,4. With continued global warming, bleaching events are predicted to increase in frequency and severity, causing up to 60% coral mortality globally within the next few decades4,5,6. Although some corals are able to recover and to survive bleaching7,8, the mechanisms underlying such resilience are poorly understood. Here we show that the coral host has a significant role in recovery and resilience. Bleached and recovering Montipora capitata (branching) corals met more than 100% of their daily metabolic energy requirements by markedly increasing their feeding rates and CHAR (per cent contribution of heterotrophically acquired carbon to daily animal respiration), whereas Porites compressa (branching) and Porites lobata (mounding) corals did not. These findings suggest that coral species with high-CHAR capability during bleaching and recovery, irrespective of morphology, will be more resilient to bleaching events over the long term, could become the dominant coral species on reefs, and may help to safeguard affected reefs from potential local and global extinction.

783 citations


Network Information
Related Topics (5)
Coral reef
17.2K papers, 696.8K citations
83% related
Reef
17.9K papers, 642.9K citations
80% related
Benthic zone
23.1K papers, 763.9K citations
77% related
Phytoplankton
24.6K papers, 930.1K citations
76% related
Seawater
23.3K papers, 596.7K citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20214
20206
20195
20182
20174
20161