scispace - formally typeset
Search or ask a question

Showing papers on "Porphyrin published in 2012"


Journal ArticleDOI
TL;DR: Two porphyrin-containing MOFs were metalated with iron(III) and copper(II) to yield the metalated analogues without losing their high surface area and chemical stability.
Abstract: Three new metal–organic frameworks [MOF-525, Zr6O4(OH)4(TCPP-H2)3; MOF-535, Zr6O4(OH)4(XF)3; MOF-545, Zr6O8(H2O)8(TCPP-H2)2, where porphyrin H4-TCPP-H2 = (C48H24O8N4) and cruciform H4-XF = (C42O8H22)] based on two new topologies, ftw and csq, have been synthesized and structurally characterized. MOF-525 and -535 are composed of Zr6O4(OH)4 cuboctahedral units linked by either porphyrin (MOF-525) or cruciform (MOF-535). Another zirconium-containing unit, Zr6O8(H2O)8, is linked by porphyrin to give the MOF-545 structure. The structure of MOF-525 was obtained by analysis of powder X-ray diffraction data. The structures of MOF-535 and -545 were resolved from synchrotron single-crystal data. MOF-525, -535, and -545 have Brunauer–Emmett–Teller surface areas of 2620, 1120, and 2260 m2/g, respectively. In addition to their large surface areas, both porphyrin-containing MOFs are exceptionally chemically stable, maintaining their structures under aqueous and organic conditions. MOF-525 and -545 were metalated with i...

705 citations


Journal ArticleDOI
TL;DR: A waterstable porous porphyrin MOF with a BET surface area of 1400 m g 1 which performs visible-lightdriven hydrogen generation from water and reveals that no aluminium is coordinated within the porphyrsin ring, consistent with the need to use reactive trialkylaluminium reagents for metalation of the p Morphyrin in solution.
Abstract: Metal–organic frameworks (MOFs) permit the combination of high internal surface area with chemical and physical functionality conferred by the molecular linker. Porphyrins are versatile functional molecules in catalysis, light harvesting, and molecular sensing. Porphyrins have been used as building blocks for MOFs, affording catalysts, light harvesting and selective sorption in liquid and gas phases. MOFs based on Alcarboxylate coordination chemistry are amongst the most thermally and chemically stable of such systems reported to date. Here we report a waterstable porous porphyrin MOF with a BET surface area of 1400 m g 1 which performs visible-lightdriven hydrogen generation from water. The freebase porphyrin can be metalated within the rigid host structure. The reaction of AlCl3·6 H2O with the free-base meso-tetra(4-carboxyl-phenyl) porphyrin H2TCPP (Figure 1b) in water under hydrothermal conditions at 180 8C followed by washing with dimethyl formamide (DMF) to remove unreacted ligand leads to the formation of the microcrystalline porous red compound H2TCPP[AlOH]2(DMF3(H2O)2) 1 (referred to as Al-PMOF, experimental details are given in section 1.1 in the Supporting Information). The linker consists of four benzoate groups around the central porphyrin core. The analyzed composition reveals that no aluminium is coordinated within the porphyrin ring, consistent with the need to use reactive trialkylaluminium reagents for metalation of the porphyrin in solution. The reaction temperature is required to solubilize the porphyrin linker. The crystal structure of 1 was solved and refined from synchrotron powder Xray diffraction collected at 100 K. Indexing and Pawley refinement revealed an orthorhombic cell (a = 31.978(3) , b = 6.5812(4) , c = 16.862(2) , V= 3548.7(6) ) consistent with the C222, Cmm2, and Cmmm space groups. Each of these candidate space groups was evaluated by simulated annealing using a semi-rigid body to describe the TCPP unit (Figure S1 in the Supporting Information) with eight refined parameters describing distances and angles within the porphyrin. The best results were obtained for the benzoic acid group perpendicular to the central porphyrin ring, which can be best described in Cmmm symmetry, and zero occupancy for Al at the center of the porphyrin. This model was used in the final Rietveld analysis (Figure 1a). Fourier mapping revealed a single guest atom in the channels attributed to oxygen from water, which was included in the final refinement (Figure S2 in the Supporting Information). Each porphyrin linker in 1 is coordinated to eight aluminium centers (Figure 1c–e) through the four carboxylate groups which each bridge two aluminium units. There is Figure 1. a) Final Rietveld refinement of 1 (100 K) showing observed (gray crosses), calculated (line a), and difference (line b) plots (Q = 2p/d). Bragg peak positions are indicated. b) TCPP porphyrinic linker in 1. c–e) Crystal structure of 1 viewed down [001], [100], and [010] directions, respectively.

614 citations


Journal ArticleDOI
TL;DR: The central metal in the porphyrin rings changes the conducting nature of the material from hole to electron, and to ambipolar conduction, and drives the high on-off ratio photoconductivity of the framework.
Abstract: Well conducted: a two-dimensional porphyrin covalent organic framework is described. Owing to the eclipsed stacking alignment, the framework is conductive and allows high-rate carrier transport through the porphyrin columns. The central metal in the porphyrin rings changes the conducting nature of the material from hole to electron, and to ambipolar conduction. It also drives the high on-off ratio photoconductivity of the framework.

328 citations


Journal ArticleDOI
TL;DR: Iron containing porous organic polymers have been synthesized by a facile one-pot bottom-up approach to porphyrin chemistry by an extended aromatic substitution reaction between pyrrole and aromatic dialdehydes in the presence of small amount of Fe(III).

232 citations


Journal ArticleDOI
TL;DR: Porph@MOM-10 is a versatile platform that undergoes exchange to serve as the parent of a series of porph@ MOMs that exhibit permanent porosity and heterogeneous catalytic activity.
Abstract: Reaction of biphenyl-3,4′,5-tricarboxylate (H3BPT) and CdCl2 in the presence of meso-tetra(N-methyl-4-pyridyl)porphine tetratosylate (TMPyP) afforded porph@MOM-10, a microporous metal–organic material containing CdTMPyP cations encapsulated in an anionic Cd(II) carboxylate framework, [Cd6(BPT)4Cl4(H2O)4]. Porph@MOM-10 is a versatile platform that undergoes exchange to serve as the parent of a series of porph@MOMs that exhibit permanent porosity and heterogeneous catalytic activity.

230 citations


Journal ArticleDOI
TL;DR: A porous metal-metalloporphyrin framework, MMPF-6, based upon an iron(III)-metalated porphyr in ligand and a secondary binding unit of a zirconium oxide cluster was constructed and demonstrated interesting peroxidase activity comparable to that of the heme protein myoglobin.
Abstract: A porous metal–metalloporphyrin framework, MMPF-6, based upon an iron(III)-metalated porphyrin ligand and a secondary binding unit of a zirconium oxide cluster was constructed; MMPF-6 demonstrated interesting peroxidase activity comparable to that of the heme protein myoglobin as well as exhibited solvent adaptability of retaining the peroxidase activity in an organic solvent.

216 citations


Journal ArticleDOI
TL;DR: In this article, a series of porphyrins bearing alkoxyl and/or alkyl chains were used to investigate the roles of these chains in the enhanced photovoltaic performance of dyes.
Abstract: A series of porphyrins bearing alkoxyl and/or alkyl chains were prepared to investigate the roles of alkoxyl/alkyl chains in the enhanced photovoltaic performance of the dyes. Based on the experimental results and the molecular simulations, we demonstrated that suitable long alkoxyl chains are capable of wrapping the porphyrin core, thus resulting in decreased dye aggregation, elevated excited states and LUMOs, and improved photovoltaic performance.

215 citations


Journal ArticleDOI
TL;DR: Recent discoveries of the influence of porphyrin molecule structure on efficiency determining electron transfer kinetics and device performance are highlighted by systematically changing the molecular structure and observing electron injection and recombination kinetics using time-resolved optical and electrical probes.

210 citations


Journal ArticleDOI
TL;DR: Investigation of the coordination self-assembly and metalation reaction of Cu with 5,10,15,20-tetra(4-pyridyl)porphyrin (2HTPyP) on a Au(111) surface by means of scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory calculations found linear coordination of a Cu atom by two CuTPyP molecules is favorable according to gas-phase calculations.
Abstract: We investigated the coordination self-assembly and metalation reaction of Cu with 5,10,15,20-tetra(4-pyridyl)porphyrin (2HTPyP) on a Au(111) surface by means of scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory calculations. 2HTPyP was found to interact with Cu through both the peripheral pyridyl groups and the porphyrin core. Pairs of pyridyl groups from neighboring molecules coordinate Cu(0) atoms, which leads to the formation of a supramolecular metal–organic coordination network. The network formation occurs at room temperature; annealing at 450 K enhances the process. The interaction of Cu with the porphyrin core is more complex. At room temperature, formation of an initial complex Cu(0)–2HTPyP is observed. Annealing at 450 K activates an intramolecular redox reaction, by which the coordinated Cu(0) is oxidized to Cu(II) and the complex Cu(II)TPyP is formed. The coordination network consists then of Cu(II) complexes linked by Cu(0) atoms; that is, it repre...

200 citations


Journal ArticleDOI
TL;DR: The kinetic comparison of SnP/silica and TiO(2) photocatalyst in real wastewater effluents showed that photosensitized singlet oxygenation of pharmaceuticals was still efficiently achieved in the presence of background organic matters, while significant interference was observed for photocatalyzed oxidation involving non-selective OH radical.
Abstract: This study evaluates the potential application of tin porphyrin- and C60 aminofullerene-derivatized silica (SnP/silica and aminoC60/silica) as 1O2 generating systems for photochemical degradation of organic pollutants. Photosensitized 1O2 production with SnP/silica, which was faster than with aminoC60/silica, effectively oxidized a variety of pharmaceuticals. Significant degradation of pharmaceuticals in the presence of the 400-nm UV cutoff filter corroborated visible light activation of both photosensitizers. Whereas the efficacy of aminoC60/silica for 1O2 production drastically decreased under irradiation with λ > 550 nm, Q-band absorption caused negligible loss of the photosensitizing activity of SnP/silica in the long wavelength region. Faster destruction of phenolates by SnP/silica and aminoC60/silica under alkaline pH conditions further implicated 1O2 involvement in the oxidative degradation. Direct charge transfer mediated by SnP, which was inferred from nanosecond laser flash photolysis, induced s...

168 citations


Journal ArticleDOI
TL;DR: Fundamental aspects of self-assembled structures that have been obtained from porphyrin and phthalocyanine building blocks and more complex composites for photoinduced charge separation and charge transport toward the potential applications to organic thin-film electronics are focused on.

Journal ArticleDOI
TL;DR: This poster presents a probabilistic procedure for conjugation and synthetic methods for solar cells and zinc conversion efficiency using Porphyrin Sensitizers and Tio2, and describes their applications in solar cell research and materials science.
Abstract: Keywords: conjugation ; electron transfer ; solar cells ; synthetic methods ; zinc ; Conversion Efficiency ; Porphyrin Sensitizers ; Tio2 ; Dyes Reference EPFL-ARTICLE-177266doi:10.1002/anie.201108963View record in Web of Science Record created on 2012-05-18, modified on 2016-08-09

Book ChapterDOI
29 Jun 2012
TL;DR: The porphyrins (Fig. 1) are an important class of naturally occurring macrocyclic compounds found in biological compounds that play a very important role in the metabolism of living organisms as mentioned in this paper.
Abstract: The porphyrins (Fig. 1) are an important class of naturally occurring macrocyclic compounds found in biological compounds that play a very important role in the metabolism of living organisms. They have a universal biological distribution and were involved in the oldest metabolic phenomena on earth. Some of the best examples are the iron-containing porphyrins found as heme (of haemoglobin) and the magnesium-containing reduced porphyrin (or chlorine) found in chlorophyll. Without porphyrins and their relative compounds, life as we know it would be impossible and therefore the knowledge of these systems and their excited states is essential in understanding a wide variety of biological processes, including oxygen binding, electron transfer, catalysis, and the initial photochemical step in photosynthesis.

Journal ArticleDOI
TL;DR: In this paper, an approach for engineering of molecular co-sensitization of TiO2 films in a cocktail solution containing YD2-oC8, an organic dye (CD4) and YDD6 in a specific molar ratio was presented.
Abstract: Co-sensitization of two or more dyes with complementary absorption spectra on a semiconductor film is an effective approach to enhance the performance of a dye-sensitized solar cell (DSSC). Porphyrin sensitizer YD2-oC8 showed outstanding photovoltaic performance co-sensitized with an organic dye to cover the entire visible spectral region, 400–700 nm. To promote the light-harvesting capability beyond 700 nm, a porphyrin dimer (YDD6) was synthesized for a co-sensitized system. We report a systematic approach for engineering of molecular co-sensitization of TiO2 films in a cocktail solution containing YD2-oC8, an organic dye (CD4) and YDD6 in a specific molar ratio to optimize the photovoltaic performance of the device. The resulting device showed panchromatic spectral features in the IPCE action spectrum in the region 400–700 nm attaining efficiencies of 75–80%; the spectrum is extended to the near-IR region attaining 40–45% in 700–800 nm region, giving JSC/mA cm−2 = 19.28, VOC/mV = 753, FF = 0.719, and η = 10.4% under standard AM 1.5 G one-sun irradiation. This performance is superior to what is obtained from the individual single-dye devices and the two-dye co-sensitized systems. The shifts of TiO2 potential upon dye uptake and the kinetics of charge recombination were examined through measurements of the charge extraction (CE) and intensity-modulated photovoltage spectroscopy (IMVS), respectively. Five co-sensitized systems were investigated to demonstrate that suppression of dye aggregation of YDD6 in the co-sensitized film is a key factor to further improve the device performance.

Journal ArticleDOI
TL;DR: A subtle relationship exists between the output of intramolecular oxidative coupling and the nature of the second aromatic moiety, cation in the porphyrin cavity, oxidant, and type of remaining meso-substituent.

Journal ArticleDOI
TL;DR: A porphyrin aggregate is reported that exhibits novel exciton state properties for light-harvesting applications and enables control of energy dissipation of coherent excited states by changing the self-assembly pattern.
Abstract: A porphyrin aggregate is reported that exhibits novel exciton state properties for light-harvesting applications. This porphyrin aggregate enables control of energy dissipation of coherent excited states by changing the self-assembly pattern. New exciton spectral features create a new route of energy transfer in this porphyrin aggregate. The kinetic model of exciton state decay is addressed in this Perspective by reporting steady-state and transient emission and absorption studies of porphyrin J- and H-aggregates. The porphyrin J-aggregate emerges with better spectral coverage and exciton dynamics, which are suitable for light-harvesting antenna functions. This motif is explored in a photosensitization study of TiO2 semiconductor materials. The transient absorption studies show that the J-aggregate improves the photoinduced charge separation at the porphyrin/TiO2 interface. The higher charge separation is attributed to exciton-coupled charge-transfer processes in porphyrin J-aggregate/TiO2 hybrid material...

Journal ArticleDOI
TL;DR: It is established that the highly crystalline C(60)/Co porphyrin nanosheets have a simple (1:1) stoichiometry, and when incorporated in bottom-gate, bottom-contact field-effect transistors (FETs), they show ambipolar charge transport characteristics.
Abstract: A novel supramolecular nanoarchitecture, comprising C60/Co porphyrin nanosheets, was prepared by a simple liquid–liquid interfacial precipitation method and fully characterized by means of optical microscopy, AFM, STEM, TEM, and XRD. It is established that the highly crystalline C60/Co porphyrin nanosheets have a simple (1:1) stoichiometry, and when incorporated in bottom-gate, bottom-contact field-effect transistors (FETs), they show ambipolar charge transport characteristics.

Journal ArticleDOI
TL;DR: High singlet oxygen quantum yield in water at longer wavelength and promising IC(50) values in a panel of cancer cell lines ensure the potential candidacy of the sensitizer as a PDT drug.
Abstract: A water-soluble derivative of N-confused porphyrin (NCP) was synthesized, and the photodynamic therapeutic (PDT) application was investigated by photophysical and in vitro studies. High singlet oxygen quantum yield in water at longer wavelength and promising IC50 values in a panel of cancer cell lines ensure the potential candidacy of the sensitizer as a PDT drug. Reactive oxygen species (ROS) generation on PDT in MDA-MB 231 cells and the apoptotic pathway of cell death was illustrated using different techniques.

Journal ArticleDOI
TL;DR: Keeping MOM: Reaction of biphenyl-3,4',5-tricarboxylate and Cd(NO3)2 in the presence of meso-tetra(N-methyl-4-pyridyl)porphine tetratosylate afforded porph@MOM-11, a microporous metal–organic material that encapsulates cationic porphyrins and solvent in alternating open channels.
Abstract: Keeping MOM: Reaction of biphenyl-3,4',5-tricarboxylate and Cd(NO3)2 in the presence of meso-tetra(N-methyl-4-pyridyl)porphine tetratosylate afforded porph@MOM-11, a microporous metal–organic material (MOM) that encapsulates cationic porphyrins and solvent in alternating open channels. Porph@MOM-11 has cation and anion binding sites that facilitate cooperative addition of inorganic salts (such as M+Cl-) in a stoichiometric fashion.

Journal ArticleDOI
TL;DR: 8-Hydroxylquinoline is demonstrated for the first time as a strong alternative anchoring group porphyrin dyes to improve the long-term stability of solar cells.

Journal ArticleDOI
TL;DR: The most efficacious Mn(III) porphyrinic scavengers of reactive species have positive charges close to the Mn site, whereby they afford thermodynamic and electrostatic facilitation for the reaction with negatively charged species such as O2•− and ONOO− and the pro-oxidative action of MnPs in suppressing NF-κB activation in nucleus has been substantiated.
Abstract: The most efficacious Mn(III) porphyrinic (MnPs) scavengers of reactive species have positive charges close to the Mn site, whereby they afford thermodynamic and electrostatic facilitation for the reaction with negatively charged species such as O 2 •− and ONOO−. Those are Mn(III) meso tetrakis(N-alkylpyridinium-2-yl)porphyrins, more specifically MnTE-2-PyP5+ (AEOL10113) and MnTnHex-2-PyP5+ (where alkyls are ethyl and n-hexyl, respectively), and their imidazolium analog, MnTDE-2-ImP5+ (AEOL10150, Mn(III) meso tetrakis(N,N′-diethylimidazolium-2-yl) porphyrin). The efficacy of MnPs in vivo is determined not only by the compound antioxidant potency, but also by its bioavailability. The former is greatly affected by the lipophilicity, size, structure, and overall shape of the compound. These porphyrins have the ability to both eliminate reactive oxygen species and impact the progression of oxidative stress-dependent signaling events. This will effectively lead to the regulation of redox-dependent transcription factors and the suppression of secondary inflammatory- and oxidative stress-mediated immune responses. We have reported on the inhibition of major transcription factors HIF-1α, AP-1, SP-1, and NF-κB by Mn porphyrins. While the prevailing mechanistic view of the suppression of transcription factors activation is via antioxidative action (presumably in cytosol), the pro-oxidative action of MnPs in suppressing NF-κB activation in nucleus has been substantiated. The magnitude of the effect is dependent upon the electrostatic (porphyrin charges) and thermodynamic factors (porphyrin redox ability). The pro-oxidative action of MnPs has been suggested to contribute at least in part to the in vitro anticancer action of MnTE-2-PyP5+ in the presence of ascorbate, and in vivo when combined with chemotherapy of lymphoma. Given the remarkable therapeutic potential of metalloporphyrins, future studies are warranted to further our understanding of in vivo action/s of Mn porphyrins, particularly with respect to their subcellular distribution.

Journal ArticleDOI
TL;DR: The length dependence of charge transport is evaluated in three families of porphyrin-based wires, and the planar tapes are more conjugated than the alkyne-linked oligomers, but these two types of wires have similar conductance attenuation factors.
Abstract: The length dependence of charge transport is evaluated in three families of porphyrin-based wires. Planar edge-fused tapes and alkyne-linked oligomers mediate efficient charge transport with exceptionally shallow distance dependence, whereas the conductances of the twisted singly linked chains decrease steeply with increasing oligomer length. The planar tapes are more conjugated than the alkyne-linked oligomers, but these two types of wires have similar conductance attenuation factors.

Journal ArticleDOI
TL;DR: Fe(III)-meso-tetra(pyridyl)porphyrins are electrocatalysts for the reduction of dioxygen in aqueous acidic solution because the inward-pointing pyridinium groups influence proton delivery despite their distance from the iron centre.

Journal ArticleDOI
TL;DR: An iron porphyrin catalyst with four electron donor groups is reported, which reduces O(2) by four electrons under both fast and slow electron fluxes at pH 7.2.

Journal ArticleDOI
TL;DR: In this paper, a series of cobalt-III chloride porphyrin complexes of the general formula 5,10,15,20-tetra(p-alkoxy)phenylporphyrin cobalt chloride (4b-e) and the related 5, 10, 15,20tetras (p-nitro)-phenylporphrin cobalt (4f) are presented and their reactivity toward propylene oxide (PO)/CO2 coupling/copolymerization is explored.
Abstract: A series of cobalt(III) chloride porphyrin complexes of the general formula 5,10,15,20-tetra(p-alkoxy)phenylporphyrin cobalt chloride (4b–e) and the related 5,10,15,20-tetra(p-nitro)phenylporphyrin cobalt chloride (4f) are presented and their reactivity toward propylene oxide (PO)/CO2 coupling/copolymerization is explored. While the nitro-substituted complex (4f), in conjunction with an onium salt, shows moderate activity toward cyclization, the 4b–e/onium systems show superior copolymerization activity in comparison to tetraphenylporphyrin Co(III) chloride (4a) with high selectivity and conversion to poly(propylene carbonate) (PPC). A comprehensive copolymerization behavior study of the alkoxy-substituted porphyrin complexes 4b–e in terms of reaction temperature and CO2 pressure is presented. Complexes bearing longer alkoxy-substituents demonstrate the highest polymerization activity and molecular weights, however all substituted catalyst systems display a reduced tolerance to increased temperature with ...

Journal ArticleDOI
TL;DR: Visible light driven rotation was confirmed to be unidirectional and with similar photostationary states, despite proceeding via a triplet instead of a singlet excited state of the molecular motor.
Abstract: Driving molecular rotary motors using visible light (530-550 nm) instead of UV light was achieved using palladium tetraphenylporphyrin as a triplet sensitizer. Visible light driven rotation was confirmed by UV/vis absorption, circular dichroism and (1)H NMR spectroscopy and the rotation was confirmed to be unidirectional and with similar photostationary states, despite proceeding via a triplet instead of a singlet excited state of the molecular motor. Energy transfer proceeds in both inter- and intramolecular fashion from the triplet state of the porphyrin to the motor. Stern Volmer plots show that the rate of intermolecular quenching of the porphyrin excited state by the molecular motor is diffusion-controlled.

Journal ArticleDOI
TL;DR: The combined preliminary photophysical and photochemical features of the new products suggest that they might be promising photodynamic therapeutic agents.

Journal ArticleDOI
TL;DR: MMPF-2 possesses permanent microporosity with the highest surface area among reported porphyrin-based MOFs, and demonstrates a high uptake capacity at 273 K and 1 bar.

Journal ArticleDOI
TL;DR: In this paper, a review of the NIR emission of lanthanide cations sensitized by porphyrin derivatives acting as antenna is presented, where the design principles, structural analysis and photophysical studies are presented and discussed.

Journal ArticleDOI
TL;DR: In this paper, the supramolecular photocatalytic performance of porphyrin-based nanofibers and nanospheres in terms of photodegradation of rhodamine B (RhB) pollutant under visible light irradiation was investigated.
Abstract: In this paper, we have studied the supramolecular photocatalytic performance of porphyrin-based nanofibers and nanospheres in terms of photodegradation of rhodamine B (RhB) pollutant under visible light irradiation, wherein interesting morphology-dependent photocatalytic activity has been achieved. We have demonstrated that nanofibers, which are synthesized by means of surfactant-assisted self-assembly of zinc 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (ZnTPyP), display distinct photocatalytic activity for the photodegradation of RhB molecules, where the bleaching reaction could be repeatedly operated 8 times. When the spherical nanostructures are employed, however, only negligible photocatalytic activity could be observed. The electron paramagnetic resonance investigations have revealed that singlet oxygen species are generated when spherical ZnTPyP nanostructures are employed, whereas hydroxyl radical species are produced in the nanofiber system. An electron transfer process is suggested to be responsible for the photocatalytic performance of the fibrous nanoassemblies. It is revealed that the monomeric state of ZnTPyP in the spherical nanostructures disfavors the electron transfer process, resulting in negligible photocatalytic activity. On the contrary, the formation of J-aggregates in the nanofibers facilitates the electron transfer process, resulting in distinct photocatalytic performance. The investigation suggests that an artificial supramolecular nanoantenna system based on nanostructured porphyrin assemblies could be achieved by tuning the molecular arrangement of the nanoassemblies.