scispace - formally typeset
Search or ask a question
Topic

Postrhinal cortex

About: Postrhinal cortex is a research topic. Over the lifetime, 122 publications have been published within this topic receiving 22329 citations.


Papers
More filters
Journal ArticleDOI
11 Aug 2005-Nature
TL;DR: The dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment, whose key unit is the ‘grid cell’, which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment.
Abstract: The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.

3,445 citations

Journal ArticleDOI
27 Aug 2004-Science
TL;DR: Precise positional modulation was not observed more ventromedially in the entorhinal cortex or upstream in the postrhinal cortex, suggesting that sensory input is transformed into durable allocentric spatial representations internally in the dorsocaudal medial entorHinal cortex.
Abstract: As the interface between hippocampus and neocortex, the entorhinal cortex is likely to play a pivotal role in memory. To determine how information is represented in this area, we measured spatial modulation of neural activity in layers of medial entorhinal cortex projecting to the hippocampus. Close to the postrhinal-entorhinal border, entorhinal neurons had stable and discrete multipeaked place fields, predicting the rat's location as accurately as place cells in the hippocampus. Precise positional modulation was not observed more ventromedially in the entorhinal cortex or upstream in the postrhinal cortex, suggesting that sensory input is transformed into durable allocentric spatial representations internally in the dorsocaudal medial entorhinal cortex.

1,167 citations

Journal ArticleDOI
TL;DR: The organization of cortical inputs to the macaque monkey perirhinal and parahippocampal cortices is investigated by placing discrete injections of the retrograde tracers fast blue, diamidino yellow, and wheat germ agglutinin conjugated to horseradish peroxidase throughout these areas.
Abstract: Neuropsychological studies have recently demonstrated that the macaque monkey perirhinal (areas 35 and 36) and parahippocampal (areas TH and TF) cortices contribute importantly to normal memory function. Unfortunately, neuroanatomical information concerning the cytoarchitectonic organization and extrinsic connectivity of these cortical regions is meager. We investigated the organization of cortical inputs to the macaque monkey perirhinal and parahippocampal cortices by placing discrete injections of the retrograde tracers fast blue, diamidino yellow, and wheat germ agglutinin conjugated to horseradish peroxidase throughout these areas. We found that the macaque monkey perirhinal and parahippocampal cortices receive different complements of cortical inputs. The major cortical inputs to the perirhinal cortex arise from the unimodal visual areas TE and rostral TEO and from area TF of the parahippocampal cortex. The perirhinal cortex also receives projections from the dysgranular and granular subdivisions of the insular cortex and from area 13 of the orbitofrontal cortex. In contrast, area TF of the parahippocampal cortex receives its strongest input from more caudal visual areas V4, TEO, and caudal TE, as well as prominent inputs from polymodal association cortices, including the retrosplenial cortex and the dorsal bank of the superior temporal sulcus. Area TF also receives projections from areas 7a and LIP of the posterior parietal lobe, insular cortex, and areas 46, 13, 45, and 9 of the frontal lobe. As with area TF, area TH receives substantial projections from the retrosplenial cortex as well as moderate projections from the dorsal bank of the superior temporal sulcus; unlike area TF, area TH receives almost no innervation from areas TE and TEO. It does, however, receive relatively strong inputs from auditory association areas on the convexity of the superior temporal gyrus.

1,120 citations

Journal ArticleDOI
TL;DR: The heaviest projections from the amygdala to the hippocampal formation and the parahippocampal areas originate in the lateral, basal, accessory basal, and posterior cortical nuclei, and the underlying principles of organization of these projections are discussed.
Abstract: Recent anterograde and retrograde studies in the rat have provided detailed information on the origin and termination of the interconnections between the amygdaloid complex and the hippocampal formation and parahippocampal areas (including areas 35 and 36 of the perirhinal cortex and the postrhinal cortex). The most substantial inputs to the amygdala originate in the rostral half of the entorhinal cortex, the temporal end of the CA1 subfield and subiculum, and areas 35 and 36 of the perirhinal cortex. The amygdaloid nuclei receiving the heaviest inputs are the lateral, basal, accessory basal, and central nuclei as well as the amygdalohippocampal area. The heaviest projections from the amygdala to the hippocampal formation and the parahippocampal areas originate in the lateral, basal, accessory basal, and posterior cortical nuclei. These pathways terminate in the rostral half of the entorhinal cortex, the temporal end of the CA3 and CA1 subfields or the subiculum, the parasubiculum, areas 35 and 36 of the perirhinal cortex, and the postrhinal cortex. The connectional data are summarized and the underlying principles of organization of these projections are discussed.

910 citations

Network Information
Related Topics (5)
Hippocampal formation
30.6K papers, 1.7M citations
78% related
Hippocampus
34.9K papers, 1.9M citations
77% related
Synaptic plasticity
19.3K papers, 1.3M citations
77% related
Neuron
22.5K papers, 1.3M citations
77% related
NMDA receptor
24.2K papers, 1.3M citations
73% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20216
20205
20198
20182
20176
20163