scispace - formally typeset
Search or ask a question

Showing papers on "Potential energy surface published in 2014"


Journal ArticleDOI
TL;DR: The development of a "first principles" water potential with flexible monomers (MB-pol) for molecular simulations of water systems from gas to condensed phases and the comparison of the calculated vibration-rotation tunneling spectrum and second virial coefficient with the corresponding experimental results demonstrates the accuracy of the MB-pol dimer potential energy surface.
Abstract: The development of a "first principles" water potential with flexible monomers (MB-pol) for molecular simulations of water systems from gas to condensed phases is described. MB-pol is built upon the many-body expansion of the intermolecular interactions, and the specific focus of this study is on the two-body term (V2B) representing the full-dimensional intermolecular part of the water dimer potential energy surface. V2B is constructed by fitting 40,000 dimer energies calculated at the CCSD(T)/CBS level of theory and imposing the correct asymptotic behavior at long-range as predicted from "first principles". The comparison of the calculated vibration-rotation tunneling (VRT) spectrum and second virial coefficient with the corresponding experimental results demonstrates the accuracy of the MB-pol dimer potential energy surface.

380 citations


Journal ArticleDOI
TL;DR: The accuracy of MB-pol is demonstrated through comparison of the calculated third virial coefficient with the corresponding experimental data as well as through analysis of the relative energy differences of small clusters.
Abstract: A full-dimensional potential energy function (MB-pol) for simulations of water from the dimer to bulk phases is developed entirely from “first principles” by building upon the many-body expansion of the interaction energy. Specifically, the MB-pol potential is constructed by combining a highly accurate dimer potential energy surface [J. Chem. Theory Comput. 2013, 9, 5395] with explicit three-body and many-body polarization terms. The three-body contribution, expressed as a combination of permutationally invariant polynomials and classical polarizability, is derived from a fit to more than 12000 three-body energies calculated at the CCSD(T)/aug-cc-pVTZ level of theory, imposing the correct asymptotic behavior as predicted from “first principles”. Here, the accuracy of MB-pol is demonstrated through comparison of the calculated third virial coefficient with the corresponding experimental data as well as through analysis of the relative energy differences of small clusters.

307 citations


Journal ArticleDOI
27 Mar 2014-Nature
TL;DR: The experimental demonstration that random spectra are indeed found at ultralow temperatures is described and revealed, revealing chaotic behaviour in the native interaction between ultracold atoms.
Abstract: An ultracold gas of erbium atoms is shown to have many scattering resonances whose quantum fluctuations exhibit chaotic behaviour resulting from the anisotropy of the atoms’ interactions. The ability to tune the interactions between atoms or molecules cooled to ultracold temperatures provides a powerful test-bed for realizing and exploring exotic states of matter. For the case of simple atoms, the scattering interactions between these cold particles are well understood; less clear is what happens when the constituent particles are more complex. Albert Frisch and colleagues have now entered this uncharted territory using magnetic lanthanide atoms, where they observe the first signatures of chaotic behaviour in the interactions between ultracold atoms. Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field1. For simple atoms, such as alkalis, scattering resonances are extremely well characterized2. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated3,4 that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do5. According to the Bohigas–Giannoni–Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision6,7,8. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano–Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory9. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms’ potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

207 citations


Journal ArticleDOI
02 May 2014-Science
TL;DR: A joint experimental and theoretical study of D2O dissociation on the Ni(111) surface finds the larger increase of the dissociation probability by vibrational excitation than by translation per unit of energy is consistent with a late barrier along the O-D stretch reaction coordinate.
Abstract: Water dissociation on transition-metal catalysts is an important step in steam reforming and the water-gas shift reaction. To probe the effect of translational and vibrational activation on this important heterogeneous reaction, we performed state-resolved gas/surface reactivity measurements for the dissociative chemisorption of D2O on Ni(111), using molecular beam techniques. The reaction occurs via a direct pathway, because both the translational and vibrational energies promote the dissociation. The experimentally measured initial sticking probabilities were used to calibrate a first-principles potential energy surface based on density functional theory. Quantum dynamical calculations on the scaled potential energy surface reproduced the experimental results semiquantitatively. The larger increase of the dissociation probability by vibrational excitation than by translation per unit of energy is consistent with a late barrier along the O-D stretch reaction coordinate.

168 citations


Journal ArticleDOI
TL;DR: 2D electronic–vibrational spectroscopy is developed, capable of correlating the electronic and vibrational degrees of freedom, and applied to the study of the 4-(di-cyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM) laser dye in deuterated dimethyl sulfoxide and its excited state relaxation pathways.
Abstract: Multidimensional nonlinear spectroscopy, in the electronic and vibrational regimes, has reached maturity. To date, no experimental technique has combined the advantages of 2D electronic spectroscopy and 2D infrared spectroscopy, monitoring the evolution of the electronic and nuclear degrees of freedom simultaneously. The interplay and coupling between the electronic state and vibrational manifold is fundamental to understanding ensuing nonradiative pathways, especially those that involve conical intersections. We have developed a new experimental technique that is capable of correlating the electronic and vibrational degrees of freedom: 2D electronic–vibrational spectroscopy (2D-EV). We apply this new technique to the study of the 4-(di-cyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM) laser dye in deuterated dimethyl sulfoxide and its excited state relaxation pathways. From 2D-EV spectra, we elucidate a ballistic mechanism on the excited state potential energy surface whereby molecules are almost instantaneously projected uphill in energy toward a transition state between locally excited and charge-transfer states, as evidenced by a rapid blue shift on the electronic axis of our 2D-EV spectra. The change in minimum energy structure in this excited state nonradiative crossing is evident as the central frequency of a specific vibrational mode changes on a many-picoseconds timescale. The underlying electronic dynamics, which occur on the hundreds of femtoseconds timescale, drive the far slower ensuing nuclear motions on the excited state potential surface, and serve as a excellent illustration for the unprecedented detail that 2D-EV will afford to photochemical reaction dynamics.

164 citations


Journal ArticleDOI
TL;DR: Evidence is presented that the super-reduction is accompanied by metal-metal bond formation, beginning from the 12th to 14th excess electron transferred to the cluster, and this "semiporous molecular capacitor" structure is likely the reason for the effective electron uptake in POMs.
Abstract: Theoretical investigations are presented on the molecular and electronic structure changes that occur as α-Keggin-type polyoxometalate (POM3–) clusters [PM12O40]3– (M = Mo, W) are converted toward their super-reduced POM27– state during the discharging process in lithium-based molecular cluster batteries. Density functional theory was employed in geometry optimization, and first-principles molecular dynamics simulations were used to explore local minima on the potential energy surface of neutral POM clusters adorned with randomly placed Li atoms as electron donors around the cluster surface. On the basis of structural, electron density, and molecular orbital studies, we present evidence that the super-reduction is accompanied by metal–metal bond formation, beginning from the 12th to 14th excess electron transferred to the cluster. Afterward, the number of metal–metal bonds increases nearly linearly with the number of additionally transferred excess electrons. In α-Keggin-type POMs, metal triangles are a p...

150 citations


Journal ArticleDOI
TL;DR: It is found that standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional crossing along the branching plane but rather a one-dimensional Crossing along the same plane, and that for the same initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by a few percent.
Abstract: We report and characterize ground-state and excited-state potential energy profiles using a variety of electronic structure methods along a loop lying on the branching plane associated with a conical intersection (CI) of a reduced retinal model, the penta-2,4-dieniminium cation (PSB3). Whereas the performance of the equation-of-motion coupled-cluster, density functional theory, and multireference methods had been tested along the excited- and ground-state paths of PSB3 in our earlier work, the ability of these methods to correctly describe the potential energy surface shape along a CI branching plane has not yet been investigated. This is the focus of the present contribution. We find, in agreement with earlier studies by others, that standard time-dependent DFT (TDDFT) does not yield the correct two-dimensional (i.e., conical) crossing along the branching plane but rather a one-dimensional (i.e., linear) crossing along the same plane. The same type of behavior is found for SS-CASPT2(IPEA=0), SS-CASPT2(IPEA=0.25), spin-projected SF-TDDFT, EOM-SF-CCSD, and, finally, for the reference MRCISD+Q method. In contrast, we found that MRCISD, CASSCF, MS-CASPT2(IPEA=0), MS-CASPT2(IPEA=0.25), XMCQDPT2, QD-NEVPT2, non-spin-projected SF-TDDFT, and SI-SA-REKS yield the expected conical crossing. To assess the effect of the different crossing topologies (i.e., linear or conical) on the PSB3 photoisomerization efficiency, we discuss the results of 100 semiclassical trajectories computed by CASSCF and SS-CASPT2(IPEA=0.25) for a PSB3 derivative. We show that for the same initial conditions, the two methods yield similar dynamics leading to isomerization quantum yields that differ by only a few percent.

148 citations


Journal ArticleDOI
TL;DR: It is shown that the SSW-crystal method can efficiently locate the global minimum from random initial structures without a priori knowledge of the system, and also allows for exhaustive sampling of the phase transition pathways, from which the lowest energy pathway can be obtained.
Abstract: The determination of crystal structures and the solid-to-solid phase transition mechanisms are two important and related subjects in material science. Here we develop an unbiased general-purpose potential energy surface (PES) searching method, namely, SSW-crystal method, for prediction of both the crystal structure and the crystal phase transition pathway. The SSW-crystal method features with stochastic surface walking (SSW) via repeated small structural perturbation by taking into account the second derivative information on both the lattice and the atom degrees of freedom. The SSW-crystal method is capable of overcoming the high barrier of phase transition and identifying the desirable phase transition reaction coordinates. By applying the SSW-crystal method to a set of examples, including SiO2 crystal up to 162 atoms per cell, Lennard-Jones model crystals up to 256 atoms, ternary SrTiO3 crystal of 50 atoms and the rutile-to-anatase TiO2 phase transition, we show that the SSW-crystal method can efficiently locate the global minimum (GM) from random initial structures without a priori knowledge of the system, and also allows for exhaustive sampling of the phase transition pathways, from which the lowest energy pathway can be obtained.

113 citations


Journal ArticleDOI
TL;DR: The results indicate that the dynamics of a structural symmetry-breaking transition are determined by a high-symmetry excited state potential energy surface distinct from that of the initial low-temperature state.
Abstract: Using femtosecond time-resolved x-ray diffraction, we directly monitor the coherent lattice dynamics through an ultrafast charge-density-wave-to-metal transition in the prototypical Peierls system K(0.3)MoO(3) over a wide range of relevant excitation fluences. While in the low fluence regime we directly follow the structural dynamics associated with the collective amplitude mode; for fluences above the melting threshold of the electronic density modulation we observe a transient recovery of the periodic lattice distortion. We can describe these structural dynamics as a motion along the coordinate of the Peierls distortion triggered by the prompt collapse of electronic order after photoexcitation. The results indicate that the dynamics of a structural symmetry-breaking transition are determined by a high-symmetry excited state potential energy surface distinct from that of the initial low-temperature state.

112 citations


Journal ArticleDOI
TL;DR: The dimer method is extended to include the cell degrees of freedom for periodic solid-state systems to determine reaction pathways of solid-solid phase transitions without having to specify the final state structure or reaction mechanism.
Abstract: The dimer method is a minimum mode following algorithm for finding saddle points on a potential energy surface of atomic systems. Here, the dimer method is extended to include the cell degrees of freedom for periodic solid-state systems. Using this method, reaction pathways of solid-solid phase transitions can be determined without having to specify the final state structure or reaction mechanism. Example calculations include concerted phase transitions between CdSe polymorphs and a nucleation and growth mechanism for the A15 to BCC transition in Mo.

105 citations


Journal ArticleDOI
TL;DR: The state-of-the-art methodologies for reaction dynamics computations of X + methane reactions, focusing on the mode-specific polyatomic product analysis and the Gaussian binning techniques, and reduced-dimensional quantum models, are reviewed.
Abstract: The bimolecular hydrogen abstraction reactions of methane with atoms have become benchmark systems to test and extend our knowledge of polyatomic chemical reactivity. We review the state-of-the-art methodologies for reaction dynamics computations of X + methane [X = F, O(3P), Cl, Br] reactions, which consist of two key steps: (1) potential energy surface (PES) developments and (2) reaction dynamics computations on the PES using either classical or quantum methods. We briefly describe the permutationally invariant polynomial approach for step 1 and the quasiclassical trajectory method, focusing on the mode-specific polyatomic product analysis and the Gaussian binning (1GB) techniques, and reduced-dimensional quantum models for step 2. High-quality full-dimensional ab initio PESs and dynamical studies of the X + CH4 and CHD3 reactions are reviewed. The computed integral cross-sections, angular, vibrational, and rotational product distributions are compared with available experiments. Both experimental and t...

Journal ArticleDOI
Takaki Sumi1, Yuta Takagi1, Akira Yagi1, Masakazu Morimoto1, Masahiro Irie1 
TL;DR: The cycloreversion quantum yields of compounds 1b and 2b increased upon irradiation with light at shorter wavelengths due to the energy barrier on the 2A potential energy surface in the excited electronic state.

Journal ArticleDOI
TL;DR: The ro-vibrational spectrum of the simplest Criegee intermediate (CH2OO) has been determined quantum mechanically based on nine-dimensional potential energy and dipole surfaces for its ground electronic state using a recently proposed permutation invariant polynomial neural network method.
Abstract: The ro-vibrational spectrum of the simplest Criegee intermediate (CH2OO) has been determined quantum mechanically based on nine-dimensional potential energy and dipole surfaces for its ground electronic state. The potential energy surface is fitted to more than 50 000 high-level ab initio points with a root-mean-square error of 25 cm(-1), using a recently proposed permutation invariant polynomial neural network method. The calculated rotational constants, vibrational frequencies, and spectral intensities of CH2OO are in excellent agreement with experiment. The potential energy surface provides a valuable platform for studying highly excited vibrational and unimolecular reaction dynamics of this important molecule.

Journal ArticleDOI
TL;DR: In this article, the authors reported critically evaluated rotational-vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water.
Abstract: This paper is the fourth of a series of papers reporting critically evaluated rotational–vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. This paper presents energy level and transition data for the following doubly and triply substituted isotopologues of water: D216O, D217O, and D218O. The MARVEL (Measured Active Rotational–Vibrational Energy Levels) procedure is used to determine the levels, the lines, and their self-consistent uncertainties for the spectral regions 0–14 016, 0–7969, and 0–9108 cm−1 for D216O, D217O, and D218O, respectively. For D216O, D217O, and D218O, 53 534, 600, and 12 167 lines are considered, respectively, from spectra recorded in absorption at room temperature and in emission at elevated temperatures. The number of validated energy levels is 12 269, 338, and 3351 for D216O, D217O, and D218O, respectively. The energy levels have been checked against the ones determined, with an average accuracy of about 0.03 cm−1, from variational rovibrational computations employing exact kinetic energy operators and an accurate potential energy surface. Furthermore, the rovibrational labels of the energy levels have been validated by an analysis of the computed wavefunctions using the rigid-rotor decomposition (RRD) scheme. The extensive list of MARVEL lines and levels obtained is deposited in the Supplementary Material of this paper, in a distributed information system applied to water, W@DIS, and on the official MARVEL website, where they can easily be retrieved.

Journal ArticleDOI
TL;DR: The mode-selective chemistry of the title reaction is studied by full-dimensional quantum dynamics simulation on an accurate ab initio potential energy surface for vanishing total angular momentum to derive intuitive interpretation of the ro-vibrational control of the chemical reactivity provided by a sudden model based on the quantum transition state concept.
Abstract: The mode-selective chemistry of the title reaction is studied by full-dimensional quantum dynamics simulation on an accurate ab initio potential energy surface for vanishing total angular momentum. Using a rigorous transition state based approach and multi-configurational time-dependent Hartree wave packet propagation, initial state-selected reaction probabilities for many ro-vibrational states of methane are calculated. The theoretical results are compared with experimental trends seen in reactions of methane. An intuitive interpretation of the ro-vibrational control of the chemical reactivity provided by a sudden model based on the quantum transition state concept is discussed.

Journal ArticleDOI
TL;DR: A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields.
Abstract: Conspectus Molecular mechanical force fields have been successfully used to model condensed-phase and biological systems for a half century. By means of careful parametrization, such classical force fields can be used to provide useful interpretations of experimental findings and predictions of certain properties. Yet, there is a need to further improve computational accuracy for the quantitative prediction of biomolecular interactions and to model properties that depend on the wave functions and not just the energy terms. A new strategy called explicit polarization (X-Pol) has been developed to construct the potential energy surface and wave functions for macromolecular and liquid-phase simulations on the basis of quantum mechanics rather than only using quantum mechanical results to fit analytic force fields. In this spirit, this approach is called a quantum mechanical force field (QMFF). X-Pol is a general fragment method for electronic structure calculations based on the partition of a condensed-phase or macromolecular system into subsystems ("fragments") to achieve computational efficiency. Here, intrafragment energy and the mutual electronic polarization of interfragment interactions are treated explicitly using quantum mechanics. X-Pol can be used as a general, multilevel electronic structure model for macromolecular systems, and it can also serve as a new-generation force field. As a quantum chemical model, a variational many-body (VMB) expansion approach is used to systematically improve interfragment interactions, including exchange repulsion, charge delocalization, dispersion, and other correlation energies. As a quantum mechanical force field, these energy terms are approximated by empirical functions in the spirit of conventional molecular mechanics. This Account first reviews the formulation of X-Pol, in the full variationally correct version, in the faster embedded version, and with systematic many-body improvements. We discuss illustrative examples involving water clusters (which show the power of two-body corrections), ethylmethylimidazolium acetate ionic liquids (which reveal that the amount of charge transfer between anion and cation is much smaller than what has been assumed in some classical simulations), and a solvated protein in aqueous solution (which shows that the average charge distribution of carbonyl groups along the polypeptide chain depends strongly on their position in the sequence, whereas they are fixed in most classical force fields). The development of QMFFs also offers an opportunity to extend the accuracy of biochemical simulations to areas where classical force fields are often insufficient, especially in the areas of spectroscopy, reactivity, and enzyme catalysis.

Journal ArticleDOI
TL;DR: The range of applicability of conventional ARMD is explored, and a new multisurface ARMD (MS-ARMD) method is presented, implemented in CHARMM and applied to the vibrationally induced photodissociation of sulfuric acid (H2SO4) in the gas phase.
Abstract: Adiabatic reactive molecular dynamics (ARMD) simulation method is a surface-crossing algorithm for modeling chemical reactions in classical molecular dynamics simulations using empirical force fields. As the ARMD Hamiltonian is time dependent during crossing, it allows only approximate energy conservation. In the current work, the range of applicability of conventional ARMD is explored, and a new multisurface ARMD (MS-ARMD) method is presented, implemented in CHARMM and applied to the vibrationally induced photodissociation of sulfuric acid (H2SO4) in the gas phase. For this, an accurate global potential energy surface (PES) involving 12 H2SO4 and 4 H2O + SO3 force fields fitted to MP2/6-311G++(2d,2p) reference energies is employed. The MS-ARMD simulations conserve total energy and feature both intramolecular H-transfer reactions and water elimination. An analytical treatment of the dynamics in the crossing region finds that conventional ARMD can approximately conserve total energy for limiting cases. In one of them, the reduced mass of the system is large, which often occurs for simulations of solvated biomolecular systems. On the other hand, MS-ARMD is a general approach for modeling chemical reactions including gas-phase, homogeneous, heterogeneous, and enzymatic catalytic reactions while conserving total energy in atomistic simulations.

Journal ArticleDOI
TL;DR: The molecular structure of 2-(tert-butoxycarbonyl (Boc) -amino)-5-bromopyridine (BABP) was optimized by the DFT/B3LYP method and vibrational frequencies were assigned on the basis of Potential Energy Distribution (PED) calculation using the VEDA 4.0 program.

Journal ArticleDOI
TL;DR: In this article, the first principles calculation of transition dipoles, upon which the intensity is based, relies on three distinct steps: the quantum chemical calculation of the dipole moment surface at a grid of geometries, the accurate representation of this surface using an appropriate functional form and the wave functions used to represent the initial and final states, which in turn depend on the accuracy of the potential energy surface used to generate them.

Journal ArticleDOI
TL;DR: In this article, a four-dimensional intermolecular potential energy surface (PES) for two rigid carbon dioxide molecules was determined from quantum-chemical ab initio calculations using basis sets up to aug-cc-pVQZ supplemented with bond functions.

Journal ArticleDOI
TL;DR: The effect of the choice of the exchange-correlation functional in DFT on the potential energy surface and dynamics of H2 dissociation on Ru(0001), a weakly activated system, is investigated.
Abstract: The specific reaction parameter (SRP) approach to density functional theory (DFT) has enabled a chemically accurate description of reactive scattering experiments for activated H2-metal systems (H2 + Cu(111) and Cu(100)), but its application has not yet resulted in a similarly accurate description of non-activated or weakly activated H2-metal systems. In this study, the effect of the choice of the exchange-correlation functional in DFT on the potential energy surface and dynamics of H2 dissociation on Ru(0001), a weakly activated system, is investigated. In total, full potential energy surfaces were calculated for over 20 different functionals. The functionals investigated include functionals incorporating an approximate description of the van der Waals dispersion in the correlation functional (vdW-DF and vdW-DF2 functionals), as well as the revTPSS meta-GGA. With two of the functionals investigated here, which include vdW-DF and vdW-DF2 correlation, it has been possible to accurately reproduce molecular beam experiments on sticking of H2 and D2, as these functionals yield a reaction probability curve with an appropriate energy width. Diffraction probabilities computed with these two functionals are however too high compared to experimental diffraction probabilities, which are extrapolated from surface temperatures (Ts) ⩾ 500 K to 0 K using a Debye-Waller model. Further research is needed to establish whether this constitutes a failure of the two candidate SRP functionals or a failure of the Debye-Waller model, the use of which can perhaps in future be avoided by performing calculations that include the effect of surface atom displacement or motion, and thereby of the experimental Ts.

Journal ArticleDOI
TL;DR: The number of single-point calculations required to evaluate the potential energy surface can be significantly reduced without introducing noticeable errors in the resulting vibrational spectra.
Abstract: The analysis and interpretation of the vibrational spectra of complex (bio)molecular systems, such as polypeptides and proteins, requires support from quantum-chemical calculations. Such calculations are currently restricted to the harmonic approximation. Here, we show how one of the main bottlenecks in such calculations, the evaluation of the potential energy surface, can be overcome by using localized modes instead of the commonly employed normal modes. We apply such local vibrational self-consistent field (L-VSCF) and vibrational configuration interaction (L-VCI) calculations to a cyclic water tetramer and a helical hexa-alanine peptide. The results show that the use of localized modes is equivalent to the commonly used normal modes, but offers several advantages. First, a faster convergence with respect to the excitation level is observed in L-VCI calculations. Second, the localized modes provide a reduced representation of the couplings between modes that show a regular coupling pattern. This can be used to disregard a significant number of small two-mode potentials a priori. Several such reduced coupling approximations are explored, and we show that the number of single-point calculations required to evaluate the potential energy surface can be significantly reduced without introducing noticeable errors in the resulting vibrational spectra.

Journal ArticleDOI
TL;DR: A permutationally invariant global potential energy surface for the HOCO system is reported by fitting a larger number of high-level ab initio points using the newly proposed permutation invariant polynomial-neural network method.
Abstract: A permutationally invariant global potential energy surface for the HOCO system is reported by fitting a larger number of high-level ab initio points using the newly proposed permutation invariant polynomial-neural network method. The small fitting error (∼5 meV) indicates a faithful representation of the potential energy surface over a large configuration space. Full-dimensional quantum and quasi-classical trajectory studies of the title reaction were performed on this potential energy surface. While the results suggest that the differences between this and an earlier neural network fits are small, discrepancies with state-to-state experimental data remain significant.

Journal ArticleDOI
TL;DR: A six-dimensional potential energy surface for H2 dissociation on rigid Ag(111) is developed by fitting ∼4000 plane-wave density functional theory points using the recently proposed permutation invariant polynomial-neural network (PIP-NN) method, which enforces both the surface periodicity and molecular permutation symmetry.
Abstract: A six-dimensional potential energy surface (PES) for H2 dissociation on rigid Ag(111) is developed by fitting ∼4000 plane-wave density functional theory points using the recently proposed permutation invariant polynomial-neural network (PIP-NN) method, which enforces both the surface periodicity and molecular permutation symmetry. Quantum reactive scattering calculations on the PIP-NN PES yielded dissociative sticking probabilities for both H2 and D2. Good agreement with experiment was achieved at high collision energies, but the agreement is less satisfactory at low collision energies, due apparently to the neglect of surface temperature in our model. The dissociation is activated by both vibrational and translational excitations, with roughly equal efficacies. Rotational and alignment effects were examined and found to be quite similar to hydrogen dissociation on Ag(100) and Cu(111).

Journal ArticleDOI
TL;DR: Results and an extended analysis of full-dimensional calculations of initial state-selected reaction probabilities on an accurate ab initio potential energy surface (PES) reveal the dependence of the results on the specific PES.
Abstract: Full-dimensional calculations of initial state-selected reaction probabilities on an accurate ab initio potential energy surface (PES) have been communicated recently [R. Welsch and U. Manthe, J. Chem. Phys. 141, 051102 (2014)]. These calculations use the quantum transition state concept, the multi-layer multi-configurational time-dependent Hartree approach, and graphics processing units to speed up the potential evaluation. Here further results of these calculations and an extended analysis are presented. State-selected reaction probabilities are given for many initial ro-vibrational states. The role of the vibrational states of the activated complex is analyzed in detail. It is found that rotationally cold methane mainly reacts via the ground state of the activated complex while rotationally excited methane mostly reacts via H-H-CH3-bending excited states of the activated complex. Analyzing the different contributions to the reactivity of the vibrationally states of methane, a complex pattern is found. Comparison with initial state-selected reaction probabilities computed on the semi-empirical Jordan-Gilbert PES reveals the dependence of the results on the specific PES.

Journal ArticleDOI
TL;DR: The analysis of the kinetic isotope effects shows a discrepancy between both approaches, with the VTST values smaller by a factor about 2 at very low temperatures, which is suggested to be due to the harmonic approximation used in the present VTST calculations.
Abstract: Using a recently developed full-dimensional accurate analytical potential energy surface [Gonzalez-Lavado, E., Corchado, J. C., and Espinosa-Garcia, J. J. Chem. Phys. 2014, 140, 064310], we investigate the thermal rate coefficients of the O(3P) + CH4/CD4 reactions with ring polymer molecular dynamics (RPMD) and with variational transition-state theory with multidimensional tunneling corrections (VTST/MT). The results of the present calculations are compared with available experimental data for a wide temperature range 200–2500 K. In the classical high-temperature limit, the RPMD results match perfectly the experimental data, whereas VTST results are smaller by a factor of 2. We suggest that this discrepancy is due to the harmonic approximation used in the present VTST calculations, which leads to an overestimation of the variational effects. At low temperatures the tunneling plays an important role, which is captured by both methods, although they both overestimate the experimental values. The analysis of...

Journal ArticleDOI
TL;DR: Using a previously developed full-dimensional analytical potential energy surface, it is found that the F + NH3 → HF + NH2 system is a barrierless reaction with intermediate complexes in the entry and exit channels.
Abstract: The hydrogen abstraction reaction of fluorine with ammonia represents a true chemical challenge because it is very fast, is followed by secondary abstraction reactions, which are also extremely fast, and presents an experimental/theoretical controversy about rate coefficients. Using a previously developed full-dimensional analytical potential energy surface, we found that the F + NH3 → HF + NH2 system is a barrierless reaction with intermediate complexes in the entry and exit channels. In order to understand the reactivity of the title reaction, thermal rate coefficidents were calculated using two approaches: ring polymer molecular dynamics and quasi-classical trajectory calculations, and these were compared with available experimental data for the common temperature range 276–327 K. The theoretical results obtained show behavior practically independent of temperature, reproducing Walther–Wagner’s experiment, but in contrast with Persky’s more recent experiment. However, quantitatively, our results are 1 ...

Journal ArticleDOI
TL;DR: In this paper, an atomic-level numerical investigation of rovibrational relaxation in molecular nitrogen at high temperature (>4000 K), neglecting dissociation is conducted with the use of pure Molecular Dynamics (MD) and classical Trajectory Calculations (CTC) Direct Simulation Monte Carlo (DSMC), verified to produce statistically identical results at the conditions of interest here.
Abstract: This article contains an atomic-level numerical investigation of rovibrational relaxation in molecular nitrogen at high temperature (>4000 K), neglecting dissociation. We conduct our study with the use of pure Molecular Dynamics (MD) and Classical Trajectory Calculations (CTC) Direct Simulation Monte Carlo (DSMC), verified to produce statistically identical results at the conditions of interest here. MD and CTC DSMC solely rely on the specification of a potential energy surface: in this work, the site-site Ling-Rigby potential. Additionally, dissociation is prevented by modeling the N–N bond either as a harmonic or an anharmonic spring. The selected molecular model was shown to (i) recover the shear viscosity (obtained from equilibrium pure MD Green-Kubo calculations) of molecular nitrogen over a wide range of temperatures, up to dissociation; (ii) predict well the near-equilibrium rotational relaxation behavior of N2; (iii) reproduce vibrational relaxation times in excellent accordance with the Millikan-White correlation and previous semi-classical trajectory calculations in the low temperature range, i.e., between 4000 K and 10 000 K. By simulating isothermal relaxations in a periodic box, we found that the traditional two-temperature model assumptions become invalid at high temperatures (>10 000 K), due to a significant coupling between rotational and vibrational modes for bound states. This led us to add a modification to both the Jeans and the Landau-Teller equations to include a coupling term, essentially described by an additional relaxation time for internal energy equilibration. The degree of anharmonicity of the N2 bond determines the strength of the rovibrational coupling. Although neglecting N2 dissociation only provides a partial description of a nitrogen system at very high temperatures, high-energy trends for bound-bound transitions are essential to understand nonequilibrium gas flows, with possible implications on rovibration/chemistry interaction at the onset of N2 dissociation.

Journal ArticleDOI
TL;DR: Transition-state theory and quasi-classical trajectory calculations have been performed to obtain the rate constants for the abstraction reaction and its reverse, providing supporting evidence for the accuracy of the potential.
Abstract: Extensive ab initio calculations of the stationary points in the NH4(X2A1) system are reported using both coupled cluster and multi-reference configuration interaction methods. In addition, more than 100 000 points are generated over a large configuration space and energy range (6 eV) using the explicitly correlated unrestricted coupled cluster method with single, double, and perturbative triple excitations with the augmented correlation-consistent polarized triple zeta basis set (UCCSD(T)-F12a/aug-cc-pVTZ). Using the recently proposed permutation-invariant polynomial neural network (PIP-NN) method, these points are accurately fit to an analytical form with a total root mean squared error (RMSE) of 3.4 meV (0.08 kcal mol−1). Both the abstraction and exchange channels as well as the metastable ammonium radical (NH4) are included in this potential energy surface. Transition-state theory and quasi-classical trajectory calculations have been performed to obtain the rate constants for the abstraction reaction and its reverse. Comparison with available experimental results is satisfactory, providing supporting evidence for the accuracy of the potential.

Journal ArticleDOI
TL;DR: A scheme to produce accurate full-dimensional coupled diabatic potential energy surfaces including dissociative regions and suitable for dynamical calculations is proposed and is successfully applied to model the two-sheeted surface of the (2)E″ state of the NO3 radical.
Abstract: A scheme to produce accurate full-dimensional coupled diabatic potential energy surfaces including dissociative regions and suitable for dynamical calculations is proposed. The scheme is successfully applied to model the two-sheeted surface of the 2E″ state of the NO3 radical. An accurate potential energy surface for the NO−3NO3− anion ground state is developed as well. Both surfaces are based on high-level ab initio calculations. The model consists of a diabatic potential matrix, which is expanded to higher order in terms of symmetry polynomials of symmetry coordinates. The choice of coordinates is key for the accuracy of the obtained potential energy surfaces and is discussed in detail. A second central aspect is the generation of reference data to fit the expansion coefficients of the model for which a stochastic approach is proposed. A third ingredient is a new and simple scheme to handle problematic regions of the potential energy surfaces, resulting from the massive undersampling by the reference data unavoidable for high-dimensional problems. The final analytical diabatic surfaces are used to compute the lowest vibrational levels of NO−3NO3− and the photo-electron detachment spectrum of NO−3NO3− leading to the neutral radical in the 2E″ state by full dimensional multi-surface wave-packet propagation for NO3 performed using the Multi-Configuration Time Dependent Hartree method. The achieved agreement of the simulations with available experimental data demonstrates the power of the proposed scheme and the high quality of the obtained potential energy surfaces.