scispace - formally typeset
Search or ask a question

Showing papers on "Potential energy surface published in 2020"


Journal ArticleDOI
TL;DR: A comprehensive evaluation of ML-IAPs based on four local environment descriptors --- atom-centered symmetry functions (ACSF), smooth overlap of atomic positions (SOAP), the Spectral Neighbor Analysis Potential (SNAP) bispectrum components, and moment tensors --- using a diverse data set generated using high-throughput density functional theory (DFT) calculations.
Abstract: Machine learning of the quantitative relationship between local environment descriptors and the potential energy surface of a system of atoms has emerged as a new frontier in the development of interatomic potentials (IAPs). Here, we present a comprehensive evaluation of machine learning IAPs (ML-IAPs) based on four local environment descriptors-atom-centered symmetry functions (ACSF), smooth overlap of atomic positions (SOAP), the spectral neighbor analysis potential (SNAP) bispectrum components, and moment tensors-using a diverse data set generated using high-throughput density functional theory (DFT) calculations. The data set comprising bcc (Li, Mo) and fcc (Cu, Ni) metals and diamond group IV semiconductors (Si, Ge) is chosen to span a range of crystal structures and bonding. All descriptors studied show excellent performance in predicting energies and forces far surpassing that of classical IAPs, as well as predicting properties such as elastic constants and phonon dispersion curves. We observe a general trade-off between accuracy and the degrees of freedom of each model and, consequently, computational cost. We will discuss these trade-offs in the context of model selection for molecular dynamics and other applications.

427 citations


Journal ArticleDOI
TL;DR: This protocol aims to provide chemists with the tools to implement a powerful and robust method for analyzing and understanding any chemical reaction using PyFrag 2019, and provides step-by-step instructions that can serve as a guide for carrying out the analysis of any given reaction of interest within hours to days, depending on the size of the molecular system.
Abstract: Understanding chemical reactivity through the use of state-of-the-art computational techniques enables chemists to both predict reactivity and rationally design novel reactions. This protocol aims to provide chemists with the tools to implement a powerful and robust method for analyzing and understanding any chemical reaction using PyFrag 2019. The approach is based on the so-called activation strain model (ASM) of reactivity, which relates the relative energy of a molecular system to the sum of the energies required to distort the reactants into the geometries required to react plus the strength of their mutual interactions. Other available methods analyze only a stationary point on the potential energy surface, but our methodology analyzes the change in energy along a reaction coordinate. The use of this methodology has been proven to be critical to the understanding of reactions, spanning the realms of the inorganic and organic, as well as the supramolecular and biochemical, fields. This protocol provides step-by-step instructions-starting from the optimization of the stationary points and extending through calculation of the potential energy surface and analysis of the trend-decisive energy terms-that can serve as a guide for carrying out the analysis of any given reaction of interest within hours to days, depending on the size of the molecular system.

140 citations


Journal ArticleDOI
TL;DR: Ferroelectricity in two-dimensional CuInP 2 S 6 is shown to fit a quadruple well due to the van der Waals gap between layers of this material, which offers new opportunities for both fundamental studies and applications in data storage and electronics.
Abstract: The family of layered thio- and seleno-phosphates has gained attention as potential control dielectrics for the rapidly growing family of two-dimensional and quasi-two-dimensional electronic materials. Here we report a combination of density functional theory calculations, quantum molecular dynamics simulations and variable-temperature, -pressure and -bias piezoresponse force microscopy data to predict and verify the existence of an unusual ferroelectric property—a uniaxial quadruple potential well for Cu displacements—enabled by the van der Waals gap in copper indium thiophosphate (CuInP2S6). The calculated potential energy landscape for Cu displacements is strongly influenced by strain, accounting for the origin of the negative piezoelectric coefficient and rendering CuInP2S6 a rare example of a uniaxial multi-well ferroelectric. Experimental data verify the coexistence of four polarization states and explore the temperature-, pressure- and bias-dependent piezoelectric and ferroelectric properties, which are supported by bias-dependent molecular dynamics simulations. These phenomena offer new opportunities for both fundamental studies and applications in data storage and electronics. The atomic displacements that generate ferroelectricity in materials commonly fit a double-well potential energy surface. Here, ferroelectricity in two-dimensional CuInP2S6 is shown to fit a quadruple well due to the van der Waals gap between layers of this material.

119 citations


Journal ArticleDOI
TL;DR: Notable applications of multireference electron correlation methods to chemistry, including geometry optimizations and on-the-fly dynamics, are summarized at the end followed by a discussion of future prospects.
Abstract: Multireference electron correlation methods describe static and dynamical electron correlation in a balanced way and, therefore, can yield accurate and predictive results even when single-reference methods or multiconfigurational self-consistent field theory fails. One of their most prominent applications in quantum chemistry is the exploration of potential energy surfaces. This includes the optimization of molecular geometries, such as equilibrium geometries and conical intersections and on-the-fly photodynamics simulations, both of which depend heavily on the ability of the method to properly explore the potential energy surface. Because such applications require nuclear gradients and derivative couplings, the availability of analytical nuclear gradients greatly enhances the scope of quantum chemical methods. This review focuses on the developments and advances made in the past two decades. A detailed account of the analytical nuclear gradient and derivative coupling theories is presented. Emphasis is given to the software infrastructure that allows one to make use of these methods. Notable applications of multireference electron correlation methods to chemistry, including geometry optimizations and on-the-fly dynamics, are summarized at the end followed by a discussion of future prospects.

80 citations


Journal ArticleDOI
TL;DR: This version of KinBot tackles C, H, O and S atom containing species and unimolecular reactions, and automatically characterizes kinetically important stationary points on reactive potential energy surfaces and arranges the results into a form that lends itself easily to master equation calculations.

75 citations


Journal ArticleDOI
TL;DR: The results at the DFT level using the B3LYP functional and the def2‐TZVP basis set show that the choice of the solute cavity does neither affect the accuracy nor the cost of calculations for small systems (< 100 atoms, and for larger systems, the use of a vdW‐type cavity is recommended, as it prevents small oscillations in the gradient which affect the convergence of the SCF energy gradient.
Abstract: The treatment of the solvation charges using Gaussian functions in the polarizable continuum model results in a smooth potential energy surface. These charges are placed on top of the surface of the solute cavity. In this article, we study the effect of the solute cavity (van der Waals-type or solvent-excluded surface-type) using the Gaussian charge scheme within the framework of the conductor-like polarizable continuum model on (a) the accuracy and computational cost of the self-consistent field (SCF) energy and its gradient and on (b) the calculation of free energies of solvation. For that purpose, we have considered a large set of systems ranging from few atoms to more than 200 atoms in different solvents. Our results at the DFT level using the B3LYP functional and the def2-TZVP basis set show that the choice of the solute cavity does neither affect the accuracy nor the cost of calculations for small systems (< 100 atoms). For larger systems, the use of a vdW-type cavity is recommended, as it prevents small oscillations in the gradient (present when using a SES-type cavity), which affect the convergence of the SCF energy gradient. Regarding the free energies of solvation, we consider a solvent-dependent probe sphere to construct the solvent-accessible surface area required to calculate the nonelectrostatic contribution to the free energy of solvation. For this part, our results for a large set of organic molecules in different solvents agree with available experimental data with an accuracy lower than 1 kcal/mol for both polar and nonpolar solvents.

64 citations


Journal ArticleDOI
TL;DR: It is shown that [4]-ladderane always exhibits ‘all-or-none’ cascade mechanoactivations and the same stereochemical distribution of the generated dienes under various conditions and within different polymer backbones.
Abstract: Force can induce remarkable non-destructive transformations along a polymer, but we have a limited understanding of the energy transduction and product distribution in tandem mechanochemical reactions. Ladderanes consist of multiple fused cyclobutane rings and have recently been used as monomeric motifs to develop polymers that drastically change their properties in response to force. Here we show that [4]-ladderane always exhibits 'all-or-none' cascade mechanoactivations and the same stereochemical distribution of the generated dienes under various conditions and within different polymer backbones. Transition state theory fails to capture the reaction kinetics and explain the observed stereochemical distributions. Ab initio steered molecular dynamics reveals unique non-equilibrium dynamic effects: energy transduction from the first cycloreversion substantially accelerates the second cycloreversion, and bifurcation on the force-modified potential energy surface leads to the product distributions. Our findings illustrate the rich chemistry in closely coupled multi-mechanophores and an exciting potential for effective energy transduction in tandem mechanochemical reactions.

63 citations


Journal ArticleDOI
TL;DR: This work used automated potential energy surface exploration to generate 12,000 organic reactions involving H, C, N, and O atoms calculated at the ω B97X-D3/def2-TZVP quantum chemistry level, and extracted atom-mapped reaction SMILES, activation energies, and enthalpies of reaction.
Abstract: Reaction times, activation energies, branching ratios, yields, and many other quantitative attributes are important for precise organic syntheses and generating detailed reaction mechanisms. Often, it would be useful to be able to classify proposed reactions as fast or slow. However, quantitative chemical reaction data, especially for atom-mapped reactions, are difficult to find in existing databases. Therefore, we used automated potential energy surface exploration to generate 12,000 organic reactions involving H, C, N, and O atoms calculated at the ωB97X-D3/def2-TZVP quantum chemistry level. We report the results of geometry optimizations and frequency calculations for reactants, products, and transition states of all reactions. Additionally, we extracted atom-mapped reaction SMILES, activation energies, and enthalpies of reaction. We believe that this data will accelerate progress in automated methods for organic synthesis and reaction mechanism generation—for example, by enabling the development of novel machine learning models for quantitative reaction prediction. Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12047193

62 citations


Journal ArticleDOI
TL;DR: The successful application of the GAP model to the phonon density of states of a 2500-atom β-Ga2O3 structure at elevated temperature indicates the strength of machine learning potentials to tackle large-scale atomic systems in long molecular simulations, which would be almost impossible to generate with DFT-based molecular simulations at present.
Abstract: The thermal properties of β-Ga2O3 can significantly affect the performance and reliability of high-power electronic devices. To date, due to the absence of a reliable interatomic potential, first-principles calculations based on density functional theory (DFT) have been routinely used to probe the thermal properties of β-Ga2O3. DFT calculations can only tackle small-scale systems due to the huge computational cost, while the thermal transport processes are usually associated with large time and length scales. In this work, we develop a machine learning based Gaussian approximation potential (GAP) for accurately describing the lattice dynamics of perfect crystalline β-Ga2O3 and accelerating atomic-scale simulations. The GAP model shows excellent convergence, which can faithfully reproduce the DFT potential energy surface at a training data size of 32 000 local atomic environments. The GAP model is then used to predict ground-state lattice parameters, coefficients of thermal expansion, heat capacity, phonon dispersions at 0 K, and anisotropic thermal conductivity of β-Ga2O3, which are all in excellent agreement with either the DFT results or experiments. The accurate predictions of phonon dispersions and thermal conductivities demonstrate that the GAP model can well describe the harmonic and anharmonic interactions of phonons. Additionally, the successful application of our GAP model to the phonon density of states of a 2500-atom β-Ga2O3 structure at elevated temperature indicates the strength of machine learning potentials to tackle large-scale atomic systems in long molecular simulations, which would be almost impossible to generate with DFT-based molecular simulations at present.

43 citations


Journal ArticleDOI
01 Aug 2020-Heliyon
TL;DR: To study the biological activity of the title compound, molecular docking has been performed which suggests that the title molecule may act as a membrane permeable inhibitor.

40 citations


Journal ArticleDOI
TL;DR: It is shown that the combination of Gaussian process regression with those coordinate systems employed by state-of-the-art geometry optimizers can significantly improve the performance of this powerful machine learning technique.
Abstract: Locating the minimum energy structure of molecules, typically referred to as geometry optimization, is one of the first steps of any computational chemistry calculation. Earlier research was mostly dedicated to finding convenient sets of molecule-specific coordinates for a suitable representation of the potential energy surface, where a faster convergence toward the minimum structure can be achieved. More recent approaches, on the other hand, are based on various machine learning techniques and seem to revert to Cartesian coordinates instead for practical reasons. We show that the combination of Gaussian process regression with those coordinate systems employed by state-of-the-art geometry optimizers can significantly improve the performance of this powerful machine learning technique. This is demonstrated on a benchmark set of 30 small covalently bonded molecules.

Journal ArticleDOI
Dandan Lu1, Dandan Lu2, Jörg Behler2, Jun Li2, Jun Li1 
TL;DR: Global analytical PESs for the H + CH3OH reaction are developed using the permutation invariant polynomial-neural network (PIP-NN) and the high-dimensional neural network (HD-NN ) based on a large number of data points calculated at the level of the explicitly correlated unrestricted coupled cluster single, double, and perturbative triple level with the augmented correlation corrected valence triple-zeta basis set.
Abstract: The H + CH3OH reaction, which plays an important role in combustion and the interstellar medium, presents a prototypical system with multi channels and tight transition states. However, no globally reliable potential energy surface (PES) has been available to date. Here we develop global analytical PESs for this system using the permutation-invariant polynomial neural network (PIP-NN) and the high-dimensional neural network (HD-NN) methods based on a large number of data points calculated at the level of the explicitly correlated unrestricted coupled cluster single, double, and perturbative triple level with the augmented correlation corrected valence triple-ζ basis set (UCCSD(T)-F12a/AVTZ). We demonstrate that both machine learning PESs are able to accurately describe all dynamically relevant reaction channels. At a collision energy of 20 kcal/mol, quasi-classical trajectory calculations reveal that the dominant channel is the hydrogen abstraction from the methyl site, yielding H2 + CH2OH. The reaction of this major channel takes place mainly via the direct rebound mechanism. Both the vibrational and rotational states of the H2 product are relatively cold, and large portions of the available energy are converted into the product translational motion.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that light-induced conical intersections, a hallmark of polyatomic molecules, can be induced with light, leading to new reaction pathways, and that these potentials are shaped by the amplitude, duration and phase of the dressing fields.
Abstract: The strong coupling between intense laser fields and valence electrons in molecules causes distortions of the potential energy hypersurfaces which determine the motion of the nuclei and influence possible reaction pathways. The coupling strength varies with the angle between the light electric field and valence orbital, and thereby adds another dimension to the effective molecular potential energy surface, leading to the emergence of light-induced conical intersections. Here, we demonstrate that multiphoton couplings can give rise to complex light-induced potential energy surfaces that govern molecular behavior. In the laser-induced dissociation of H2+, the simplest of molecules, we measure a strongly modulated angular distribution of protons which has escaped prior observation. Using two-color Floquet theory, we show that the modulations result from ultrafast dynamics on light-induced molecular potentials. These potentials are shaped by the amplitude, duration and phase of the dressing fields, allowing for manipulating the dissociation dynamics of small molecules. Conical intersections, a hallmark of polyatomic molecules, can be induced with light, leading to new reaction pathways. Here, the authors show that intense fields can create complex, beyond-conical intersections even in diatomics, resulting in an unexpected angular distribution of fragment ions.

Journal ArticleDOI
TL;DR: This work fits the many-body (MB) component of the ground-state potential energy surface of N4 to an analytic function using neural networks (NNs) with permutationally invariant polynomials (PIP) to give useful fits to difficult cases that cannot be achieved by more conventional methods.
Abstract: A potential energy surface (PES) for high-energy collisions between nitrogen molecules is useful for modeling chemical dynamics in shock waves and plasmas. In the present work, we fit the many-body...

Journal ArticleDOI
TL;DR: In this paper, the density functional theory has been employed with standard functional B3LYP/6-311++G(d,p) with one-dimensional potential energy surface (PES) scan.

Journal ArticleDOI
01 Oct 2020
TL;DR: In this paper, a prototypical multiple-channel reaction with dynamical and kinetic information is presented, but there are still many uncertainties concerning the re-constantity of the reaction.
Abstract: Cl+CH3OH → HCl+CH3O/CH2OH is a prototypical multiple-channel reaction. Experimentally, ample dynamical and kinetic information is available, but there are still many uncertainties concerning the re...

Journal ArticleDOI
TL;DR: The kinetics and vibrational relaxation of the N(4S) + O2(X3Σ-g) ↔ O(3P) + NO(X2Π) reaction is investigated over a wide temperature range based on quasiclassical trajectory simulations on 3-dimensional potential energy surfaces (PESs) for the lowest three electronic states.
Abstract: The kinetics and vibrational relaxation of the N(4S) + O2(X3Σ−g) ↔ O(3P) + NO(X2Π) reaction is investigated over a wide temperature range based on quasiclassical trajectory simulations on 3-dimensional potential energy surfaces (PESs) for the lowest three electronic states. Reference energies at the multi reference configuration interaction level are represented as a reproducing kernel and the topology of the PESs is rationalized by analyzing the CASSCF wavefunction of the relevant states. The forward rate matches one measurement at 1575 K and is somewhat lower than the high-temperature measurement at 2880 K whereas for the reverse rate the computations are in good agreement for temperatures between 3000 and 4100 K. The temperature-dependent equilibrium rates are consistent with results from JANAF and CEA results. Vibrational relaxation rates for O + NO(ν = 1) → O + NO(ν = 0) are consistent with a wide range of experiments. This process is dominated by the dynamics on the 2A′ and 4A′ surfaces which both contribute similarly up to temperatures T ∼ 3000 K, and it is found that vibrationally relaxing and non-relaxing trajectories probe different parts of the potential energy surface. The total cross section depending on the final vibrational state monotonically decreases which is consistent with early experiments and previous simulations but at variance with other recent experiments which reported an oscillatory cross section.

Journal ArticleDOI
TL;DR: Tectorigenin (5,7-dihydroxy-3-(4-hydroxyphenyl)-6-methoxy-4H-chromen-4-one), a plant isoflavonoid, is a potential bioactive compound having antioxidant, antiinflammatory, antiosteoarthritis, anti-microbiotic, and antiplatelet activity.

Journal ArticleDOI
TL;DR: It is demonstrated that the machine learning based intramolecular model is transferable to the condensed phase, and that the use of a faithful representation of the quantum mechanical potential energy surface can result in corrections to absolute protein-ligand binding free energies of up to 2 kcal mol-1 in the example studied here.
Abstract: Quantum mechanical predictive modelling in chemistry and biology is often hindered by the long time scales and large system sizes required of the computational model. Here, we employ the kernel regression machine learning technique to construct an analytical potential, using the Gaussian Approximation Potential software and framework, that reproduces the quantum mechanical potential energy surface of a small, flexible, drug-like molecule, 3-(benzyloxy)pyridin-2-amine. Challenges linked to the high dimensionality of the configurational space of the molecule are overcome by developing an iterative training protocol and employing a representation that separates short and long range interactions. The analytical model is connected to the MCPRO simulation software, which allows us to perform Monte Carlo simulations of the small molecule bound to two proteins, p38 MAP kinase and leukotriene A4 hydrolase, as well as in water. We demonstrate that our machine learning based intramolecular model is transferable to the condensed phase, and demonstrate that the use of a faithful representation of the quantum mechanical potential energy surface can result in corrections to absolute protein-ligand binding free energies of up to 2 kcal mol-1 in the example studied here.

Journal ArticleDOI
TL;DR: New theoretical study of high-energy states for the main isotopologue 48O3 and for the family of 18O-enriched isotopomers 50O3 of the ozone molecule considered using a full-symmetry approach, and theoretical predictions for the splitting of observable band centers are provided for the first time.
Abstract: Knowledge of highly excited rovibrational states of ozone isotopologues is of key importance for modelling the dynamics of exchange reactions, for understanding longstanding problems related to isotopic anomalies of the ozone formation, and for analyses of extra-sensitive laser spectral experiments currently in progress This work is devoted to new theoretical study of high-energy states for the main isotopologue 48O3 = 16O16O16O and for the family of 18O-enriched isotopomers 50O3 = {16O16O18O, 16O18O16O, 18O16O16O} of the ozone molecule considered using a full-symmetry approach Energies and wave functions of bound states near the dissociation threshold are computed in hyperspherical coordinates accounting for the permutation symmetry of three identical nuclei in 48O3 and of two identical nuclei in 50O3, using the most accurate potential energy surface available now The obtained vibrational band centers agree with observed ones with the root-mean-squares deviation of about 1 cm-1, making the results appropriate for assignments and analyses of future experimental spectra The levels delocalized between the three potential wells of ozone isomers are computed and analyzed The states situated deep in the three (for 48O3) or two (for 50O3) equivalent potential wells have similar energies with negligible splitting However, the states situated just below the potential barriers separating the wells, are split due to the tunneling between the wells resulting in the splitting of rovibrational sub-bands We evaluate the amplitudes of the corresponding effects and consider possible perturbations in vibration-rotation bands due to interactions between three potential wells Theoretical predictions for the splitting of observable band centers are provided for the first time

Journal ArticleDOI
TL;DR: Several semiempirical and density‐functional theory methods are assessed for their ability to describe the potential energy surface and reaction energies of the covalent modification of a thiol by an electrophile.
Abstract: Targeted covalent inhibitor drugs require computational methods that go beyond simple molecular-mechanical force fields in order to model the chemical reactions that occur when they bind to their targets. Here, several semiempirical and density-functional theory (DFT) methods are assessed for their ability to describe the potential energy surface and reaction energies of the covalent modification of a thiol by an electrophile. Functionals such as PBE and B3LYP fail to predict a stable enolate intermediate. This is largely due to delocalization error, which spuriously stabilizes the prereaction complex, in which excess electron density is transferred from the thiolate to the electrophile. Functionals with a high-exact exchange component, range-separated DFT functionals, and variationally optimized exact exchange (i.e., the LC-B05minV functional) correct this issue to various degrees. The large gradient behavior of the exchange enhancement factor is also found to significantly affect the results, leading to the improved performance of PBE0. While ωB97X-D and M06-2X were reasonably accurate, no method provided quantitative accuracy for all three electrophiles, making this a very strenuous test of functional performance. Additionally, one drawback of M06-2X was that molecular dynamics (MD) simulations using this functional were only stable if a fine integration grid was used. The low-cost semiempirical methods, PM3, AM1, and PM7, provide a qualitatively correct description of the reaction mechanism, although the energetics is not quantitatively reliable. As a proof of concept, the potential of mean force for the addition of methylthiolate to methylvinyl ketone was calculated using quantum mechanical/molecular mechanical MD in an explicit polarizable aqueous solvent. © 2019 Wiley Periodicals, Inc.

Journal ArticleDOI
TL;DR: In this article, the ground state properties, potential energy curves and potential energy surfaces of the superheavy nucleus 270Hs were obtained by using the multidimensionally-constrained relativistic mean-field model with the effective interaction PC-PK1.
Abstract: We study the ground state properties, potential energy curves and potential energy surfaces of the superheavy nucleus 270Hs by using the multidimensionally-constrained relativistic mean-field model with the effective interaction PC-PK1. The binding energy, size and shape as well as single particle shell structure corresponding to the ground state of this nucleus are obtained. 270Hs is well deformed and exhibits deformed doubly magic feature in the single neutron and proton level schemes. One-dimensional potential energy curves and two-dimensional potential energy surfaces are calculated for 270Hs with various spatial symmetries imposed. We investigate in detail the effects of the reflection asymmetric and triaxial distortions on the fission barrier and fission path of 270Hs. When the axial symmetry is imposed, the reflection symmetric and reflection asymmetric fission barriers both show a double-hump structure and the former is higher. However, when triaxial shapes are allowed the reflection symmetric barrier is lowered very much and then the reflection symmetric fission path becomes favorable.

Journal ArticleDOI
TL;DR: The potential energy surface for NO2 physisorbed on a MoS2 monolayer acting as a chemical sensor is complex with several configurations having similar adsorption energies (ΔEads) and charge-trans... as mentioned in this paper.
Abstract: The potential energy surface for NO2 physisorbed on a MoS2 monolayer, acting as a chemical sensor, is complex with several configurations having similar adsorption energies (ΔEads) and charge-trans...

Journal ArticleDOI
TL;DR: In this paper, the phase space structure that governs dynamical matching is a particular type of heteroclinic trajectory which gives rise to trapping of trajectories in the central region of the caldera potential energy surface.

Journal ArticleDOI
TL;DR: In this paper, the authors used a neural network trained on 432 399 reference structures from MP2/aug-cc-pVTZ calculations to study the isomerization of acetaldehyde to vinyl alcohol.
Abstract: Acetaldehyde (AA) isomerization [to vinylalcohol (VA)] and decomposition (into either CO + CH4 or H2 + C2H2O) are studied using a fully dimensional, reactive potential energy surface represented as a neural network (NN). The NN, trained on 432 399 reference structures from MP2/aug-cc-pVTZ calculations, has a mean absolute error of 0.0453 kcal/mol and a root mean squared error of 1.186 kcal mol−1 for a test set of 27 399 structures. For the isomerization process AA → VA, the minimum dynamical path implies that the C–H vibration and the C–C–H (with H being the transferring H-atom) and the C–C–O angles are involved to surmount the 68.2 kcal/mol barrier. Using an excess energy of 93.6 kcal/mol—the typical energy available in the solar spectrum and sufficient to excite to the first electronically excited state—to initialize the molecular dynamics, no isomerization to VA is observed on the 500 ns time scale. Only with excess energies of ∼127.6 kcal/mol (including the zero point energy of the AA molecule), isomerization occurs on the nanosecond time scale. Given that collisional quenching times under tropospheric conditions are ∼1 ns, it is concluded that formation of VA following photoexcitation of AA from actinic photons is unlikely. This also limits the relevance of this reaction pathway to be a source for formic acid.

Journal ArticleDOI
TL;DR: The efficiency of this methodology derives from the insight of the earlier study referenced above that converged high-energy intramolecular vibrational excitations of weakly bound molecular complexes can be obtained from fully coupled quantum calculations where the full-dimensional product contracted basis includes only a small number of intermolecular vibration eigenstates spanning the range of energies much below those of the intramolescular vibratory states of interest.
Abstract: We present a method for efficient calculation of intramolecular vibrational excitations of H2O inside C60, together with the low-energy intermolecular translation-rotation states within each intramolecular vibrational manifold. Apart from assuming rigid C60, this nine-dimensional (9D) quantum treatment is fully coupled. Following the recently introduced approach [P. M. Felker and Z. Bacic, J. Chem. Phys. 151, 024305 (2019)], the full 9D vibrational Hamiltonian of H2O@C60 is partitioned into two reduced-dimension Hamiltonians, a 6D one for the intermolecular vibrations and another in 3D for the intramolecular degrees of freedom, and a 9D remainder term. The two reduced-dimension Hamiltonians are diagonalized, and their eigenvectors are used to build up a product contracted basis in which the full vibrational Hamiltonian is diagonalized. The efficiency of this methodology derives from the insight of our earlier study referenced above that converged high-energy intramolecular vibrational excitations of weakly bound molecular complexes can be obtained from fully coupled quantum calculations where the full-dimensional product contracted basis includes only a small number of intermolecular vibrational eigenstates spanning the range of energies much below those of the intramolecular vibrational states of interest. In this study, the eigenstates included in the 6D intermolecular contacted basis extend to only 410 cm−1 above the ground state, which is much less than the H2O stretch and bend fundamentals, at ≈3700 and ≈1600 cm−1, respectively. The 9D calculations predict that the fundamentals of all three intramolecular modes, as well as the bend overtone, of the caged H2O are blueshifted relative to those of the gas-phase H2O, the two stretch modes much more so than the bend. Excitation of the bend mode affects the energies of the low-lying H2O rotational states significantly more than exciting either of the stretching modes. The center-of-mass translational fundamental is virtually unaffected by the excitation of any of the intramolecular vibrational modes. Further progress hinges on the experimental measurement of the vibrational frequency shifts in H2O@C60 and ab initio calculation of a high-quality 9D potential energy surface for this endohedral complex, neither of which is presently available.

Journal ArticleDOI
TL;DR: In this paper, the collision-induced shapes of two rovibrational lines perturbed by He provide an unprecedented subpercent agreement with ultra-accurate cavity-enhanced measurements.
Abstract: Fully quantum ab initio calculations of the collision-induced shapes of two rovibrational ${\mathrm{H}}_{2}$ lines perturbed by He provide an unprecedented subpercent agreement with ultra-accurate cavity-enhanced measurements. This level of consistency between theory and experiment hinges on a highly accurate potential energy surface and a realistic treatment of the velocity changing and dephasing collisions. In addition to the fundamental importance, these results show that ab initio calculations can provide reference data for spectroscopic studies of planet atmospheres at the required accuracy level and can be used to populate spectroscopic line-by-line databases.

Journal ArticleDOI
TL;DR: This work trains a high-dimensional neural network potential energy surface for the porphycene molecule based on data generated with DFT-B3LYP, including pairwise van der Waals interactions and fits a kernel ridge regression model for the molecular dipole moment surface.
Abstract: The temperature dependence of vibrational spectra can provide information about structural changes of a system and also serve as a probe to identify different vibrational mode couplings. Fully anharmonic temperature-dependent calculations of these quantities are challenging due to the cost associated with statistically converging trajectory-based methods, especially when accounting for nuclear quantum effects. Here, we train a high-dimensional neural network potential energy surface for the porphycene molecule based on data generated with DFT-B3LYP, including pairwise van der Waals interactions. In addition, we fit a kernel ridge regression model for the molecular dipole moment surface. The combination of this machinery with thermostatted path integral molecular dynamics (TRPMD) allows us to obtain well-converged, full-dimensional, fully-anharmonic vibrational spectra including nuclear quantum effects, without sacrificing the first-principles quality of the potential-energy surface or the dipole surface. Within this framework, we investigate the temperature and isotopologue dependence of the high-frequency vibrational fingerprints of porphycene. While classical-nuclei dynamics predicts a red shift of the vibrations encompassing the NH and CH stretches, TRPMD predicts a strong blue shift in the NH-stretch region and a smaller one in the CH-stretch region. We explain this behavior by analyzing the modulation of the effective potential with temperature, which arises from vibrational coupling between quasi-classical thermally activated modes and high-frequency quantized modes.

Journal ArticleDOI
TL;DR: In this article, the authors used probabilistic modeling based on Gaussian processes to obtain accurate potential energy surfaces (PESs) for high-dimensional molecular systems with a small number of ab initio calculations in a system-agnostic way.
Abstract: The goal of the present work is to obtain accurate potential energy surfaces (PESs) for high-dimensional molecular systems with a small number of ab initio calculations in a system-agnostic way. We use probabilistic modeling based on Gaussian processes (GPs). We illustrate that it is possible to build an accurate GP model of a 51-dimensional PES based on 5000 randomly distributed ab initio calculations with a global accuracy of 20 000 cm−1). This opens the prospect for new applications of GPs, such as mapping out phase transitions by extrapolation or accelerating Bayesian optimization, for high-dimensional physics and chemistry problems with a restricted number of inputs, i.e., for high-dimensional problems where obtaining training data is very difficult.

Journal ArticleDOI
TL;DR: By optimization of the excited-state geometry of the donor-acceptor dyad and potential energy surface scan along the twisting angle, the experimentally observed band is reproduced in time-resolved infrared absorption spectroscopy and it is demonstrated that the rehybridization process is not involved and only the twisted intramolecular charge transfer state is formed.
Abstract: The twisted intramolecular charge transfer has been proposed for a number of years and widely accepted to explain the excited-state dynamics of organic molecules. Recently, a new state termed as "twisted and rehybridized intramolecular charge transfer" has been proposed to explain the excited-state dynamics of an aniline-triazine electron donor-acceptor dyad with an alkyne spacer based on ultrafast time-resolved spectroscopy. However, the change of the geometries along the excited-state decay pathway remains unknown. In this study, by optimization of the excited-state geometry of the donor-acceptor dyad and potential energy surface scan along the twisting angle, we successfully reproduce the experimentally observed band in time-resolved infrared absorption spectroscopy. Our calculation results demonstrated that the rehybridization process is not involved and only the twisted intramolecular charge transfer state is formed. Moreover, we located a minimum energy conical intersection between the ground and first excited-state of the donor-acceptor dyad, which is easily reached and corresponding to the primary nonradiative decay pathway of the donor-acceptor dyad. The energy of minimum energy conical intersection is solvent-dependent and consistent with the experimentally observed solvent-dependent lifetime of excited state.