Topic
Power budget
About: Power budget is a research topic. Over the lifetime, 6497 publications have been published within this topic receiving 123059 citations.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: This paper presents the aggregate power usage characteristics of large collections of servers for different classes of applications over a period of approximately six months, and uses the modelling framework to estimate the potential of power management schemes to reduce peak power and energy usage.
Abstract: Large-scale Internet services require a computing infrastructure that can beappropriately described as a warehouse-sized computing system. The cost ofbuilding datacenter facilities capable of delivering a given power capacity tosuch a computer can rival the recurring energy consumption costs themselves.Therefore, there are strong economic incentives to operate facilities as closeas possible to maximum capacity, so that the non-recurring facility costs canbe best amortized. That is difficult to achieve in practice because ofuncertainties in equipment power ratings and because power consumption tends tovary significantly with the actual computing activity. Effective powerprovisioning strategies are needed to determine how much computing equipmentcan be safely and efficiently hosted within a given power budget.In this paper we present the aggregate power usage characteristics of largecollections of servers (up to 15 thousand) for different classes ofapplications over a period of approximately six months. Those observationsallow us to evaluate opportunities for maximizing the use of the deployed powercapacity of datacenters, and assess the risks of over-subscribing it. We findthat even in well-tuned applications there is a noticeable gap (7 - 16%)between achieved and theoretical aggregate peak power usage at the clusterlevel (thousands of servers). The gap grows to almost 40% in wholedatacenters. This headroom can be used to deploy additional compute equipmentwithin the same power budget with minimal risk of exceeding it. We use ourmodeling framework to estimate the potential of power management schemes toreduce peak power and energy usage. We find that the opportunities for powerand energy savings are significant, but greater at the cluster-level (thousandsof servers) than at the rack-level (tens). Finally we argue that systems needto be power efficient across the activity range, and not only at peakperformance levels.
1,957 citations
[...]
TL;DR: The history of power transmission by radiowaves is reviewed from Heinrich Hertz to the present time with emphasis upon the free-space microwave power transmission era beginning in 1958 as mentioned in this paper.
Abstract: The history of power transmission by radiowaves is reviewed from Heinrich Hertz to the present time with emphasis upon the free-space microwave power transmission era beginning in 1958. The history of the technology is developed in terms of its relationship to the intended applications. These include microwave powered aircraft and the Solar Power Satellite concept.
1,404 citations
[...]
TL;DR: Results confirm the unique benefits for future generations of CMPs that can be achieved by bringing optics into the chip in the form of photonic NoCs, as well as a comparative power analysis of a photonic versus an electronic NoC.
Abstract: The design and performance of next-generation chip multiprocessors (CMPs) will be bound by the limited amount of power that can be dissipated on a single die We present photonic networks-on-chip (NoC) as a solution to reduce the impact of intra-chip and off-chip communication on the overall power budget A photonic interconnection network can deliver higher bandwidth and lower latencies with significantly lower power dissipation We explain why on-chip photonic communication has recently become a feasible opportunity and explore the challenges that need to be addressed to realize its implementation We introduce a novel hybrid micro-architecture for NoCs combining a broadband photonic circuit-switched network with an electronic overlay packet-switched control network We address the critical design issues including: topology, routing algorithms, deadlock avoidance, and path-setup/tear-down procedures We present experimental results obtained with POINTS, an event-driven simulator specifically developed to analyze the proposed idea, as well as a comparative power analysis of a photonic versus an electronic NoC Overall, these results confirm the unique benefits for future generations of CMPs that can be achieved by bringing optics into the chip in the form of photonic NoCs
853 citations
[...]
TL;DR: The results show that the best architected policies can come within 1% of the performance of an ideal oracle, while meeting a given chip-level power budget, and are significantly better than static management, even if static scheduling is given oracular knowledge.
Abstract: Chip-level power and thermal implications will continue to rule as one of the primary design constraints and performance limiters. The gap between average and peak power actually widens with increased levels of core integration. As such, if per-core control of power levels (modes) is possible, a global power manager should be able to dynamically set the modes suitably. This would be done in tune with the workload characteristics, in order to always maintain a chip-level power that is below the specified budget. Furthermore, this should be possible without significant degradation of chip-level throughput performance. We analyze and validate this concept in detail in this paper. We assume a per-core DVFS (dynamic voltage and frequency scaling) knob to be available to such a conceptual global power manager. We evaluate several different policies for global multi-core power management. In this analysis, we consider various different objectives such as prioritization and optimized throughput. Overall, our results show that in the context of a workload comprised of SPEC benchmark threads, our best architected policies can come within 1% of the performance of an ideal oracle, while meeting a given chip-level power budget. Furthermore, we show that these global dynamic management policies perform significantly better than static management, even if static scheduling is given oracular knowledge.
654 citations
[...]
TL;DR: A new simulation and optimization approach is presented, targeting both high-performance and power budget issues, and the analysis approach reveals the sources of performance and power-consumption bottlenecks in different design styles.
Abstract: In this paper, we propose a set of rules for consistent estimation of the real performance and power features of the flip-flop and master-slave latch structures. A new simulation and optimization approach is presented, targeting both high-performance and power budget issues. The analysis approach reveals the sources of performance and power-consumption bottlenecks in different design styles. Certain misleading parameters have been properly modified and weighted to reflect the real properties of the compared structures. Furthermore, the results of the comparison of representative master-slave latches and flip-flops illustrate the advantages of our approach and the suitability of different design styles for high-performance and low-power applications.
638 citations