Topic
Power density
About: Power density is a(n) research topic. Over the lifetime, 9534 publication(s) have been published within this topic receiving 197264 citation(s). The topic is also known as: volumic power & volume power density.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: The goal of this paper is not to suggest that the conversion of vibrations is the best or most versatile method to scavenge ambient power, but to study its potential as a viable power source for applications where vibrations are present.
Abstract: Advances in low power VLSI design, along with the potentially low duty cycle of wireless sensor nodes open up the possibility of powering small wireless computing devices from scavenged ambient power. A broad review of potential power scavenging technologies and conventional energy sources is first presented. Low-level vibrations occurring in common household and office environments as a potential power source are studied in depth. The goal of this paper is not to suggest that the conversion of vibrations is the best or most versatile method to scavenge ambient power, but to study its potential as a viable power source for applications where vibrations are present. Different conversion mechanisms are investigated and evaluated leading to specific optimized designs for both capacitive MicroElectroMechancial Systems (MEMS) and piezoelectric converters. Simulations show that the potential power density from piezoelectric conversion is significantly higher. Experiments using an off-the-shelf PZT piezoelectric bimorph verify the accuracy of the models for piezoelectric converters. A power density of 70 @mW/cm^3 has been demonstrated with the PZT bimorph. Simulations show that an optimized design would be capable of 250 @mW/cm^3 from a vibration source with an acceleration amplitude of 2.5 m/s^2 at 120 Hz.
2,536 citations
[...]
TL;DR: In this article, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1-2 kW/kg.
Abstract: The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3–5 Wh/kg with a power density of 300–500 W/kg for high efficiency (90–95%) charge/discharges. Projections of future developments using carbon indicate that energy densities of 10 Wh/kg or higher are likely with power densities of 1–2 kW/kg. A key problem in the fabrication of these advanced devices is the bonding of the thin electrodes to a current collector such the contact resistance is less than 0.1 Ω cm2.
Special attention is given in the paper to comparing the power density characteristics of ultracapacitors and batteries. The comparisons should be made at the same charge/discharge efficiency.
2,444 citations
[...]
TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
Abstract: The science and technology of ultracapacitors are reviewed for a number of electrode materials, including carbon, mixed metal oxides, and conducting polymers. More work has been done using microporous carbons than with the other materials and most of the commercially available devices use carbon electrodes and an organic electrolytes. The energy density of these devices is 3¯5 Wh/kg with a power density of 300¯500 W/kg for high efficiency (90¯95%) charge/discharges. Projections of future developments using carbon indicate that energy densities of 10 Wh/kg or higher are likely with power densities of 1¯2 kW/kg. A key problem in the fabrication of these advanced devices is the bonding of the thin electrodes to a current collector such the contact resistance is less than 0.1 cm2. Special attention is given in the paper to comparing the power density characteristics of ultracapacitors and batteries. The comparisons should be made at the same charge/discharge efficiency.
2,437 citations
[...]
TL;DR: Li9.54Si1.74P1.44S11.7Cl0.6P3S12 as discussed by the authors showed that Li 9.54 Si 1.54P 1.74Si 1.44 S11.3 has high specific power that is superior to that of conventional cells with liquid electrolytes.
Abstract: Compared with lithium-ion batteries with liquid electrolytes, all-solid-state batteries offer an attractive option owing to their potential in improving the safety and achieving both high power and high energy densities. Despite extensive research efforts, the development of all-solid-state batteries still falls short of expectation largely because of the lack of suitable candidate materials for the electrolyte required for practical applications. Here we report lithium superionic conductors with an exceptionally high conductivity (25 mS cm−1 for Li9.54Si1.74P1.44S11.7Cl0.3), as well as high stability ( ∼0 V versus Li metal for Li9.6P3S12). A fabricated all-solid-state cell based on this lithium conductor is found to have very small internal resistance, especially at 100 ∘C. The cell possesses high specific power that is superior to that of conventional cells with liquid electrolytes. Stable cycling with a high current density of 18 C (charging/discharging in just three minutes; where C is the C-rate) is also demonstrated. The development of all-solid-state batteries requires fast lithium conductors. Here, the authors report a lithium compound, Li9.54Si1.74P1.44S11.7Cl0.3, with an exceptionally high conductivity and demonstrate that all-solid-state batteries based on the compound have high power densities.
1,449 citations
[...]
TL;DR: In this paper, a carbon nanotube sheet electrode with high power and long cycle life was used for a single cell device with 38 wt% H2SO4 as the electrolyte.
Abstract: Carbon nanotube sheet electrodes have been prepared from catalytically grown carbon nanotubes of high purity and narrow diameter distribution, centered around 80 A. Our study shows that the electrodes are free-standing mats of entangled nanotubes with an open porous structure almost impossible to obtain with activated carbon or carbon fiber. These properties are highly desirable for high power and long cycle life electrochemical capacitors. Specific capacitances of 102 and 49 F/g were measured at 1 and 100 Hz, respectively, on a single cell device with 38 wt % H2SO4 as the electrolyte. The same cell had a power density of >8000 W/kg.
1,348 citations