scispace - formally typeset
Search or ask a question
Topic

Power density

About: Power density is a research topic. Over the lifetime, 9534 publications have been published within this topic receiving 197264 citations. The topic is also known as: volumic power & volume power density.


Papers
More filters
Journal ArticleDOI
TL;DR: A tubular anode-supported "micro-solid oxide fuel cell" (μSOFC) has been developed for producing high volumetric power density (VPD) SOFC systems featuring rapid turn on/off capability as mentioned in this paper.
Abstract: A tubular anode-supported "micro-solid oxide fuel cell" (μSOFC) has been developed for producing high volumetric power density (VPD) SOFC systems featuring rapid turn on/off capability. An electrophoretic deposition (EPD)-based, facile manufacturing process is being refined to produce the anode support, anode functional and electrolyte layers of a single cell. μSOFCs (diameter < 5 mm) have two main potential advantages, a substantial increase in the electrolyte surface area per unit volume of a stack and also rapid start-up. As fuel cell power is directly proportional to the active electrolyte surface area, a μSOFC stack can substantially increase the VPD of an SOFC device. A decrease in tube diameter allows for a reduction in wall thickness without any degradation of a cell's mechanical properties. Owing to its thin wall, a μSOFC has an extremely high thermal shock resistance and low thermal mass. These two characteristics are fundamental in reducing start-up and turn-off time for the SOFC stack. Traditionally, SOFC has not been considered for portable applications due to its high thermal mass and low thermal shock resistance (start-up time in hours), but with μSOFCs' potential for rapid start-up, new possibilities for portable and transportable applications open up.

71 citations

Journal ArticleDOI
TL;DR: In this article, a thin flexible printed circuit board was utilized as a current collector in order to reduce an air-breathing monopolar stack's volume, and the effects of varying the geometry and opening ratios of the ports to the cathode on stack performance were evaluated to determine the optimal cathode structure.

71 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated a range of cathode materials for sediment microbial fuel cells (MFC) to achieve relatively high levels of power, including carbon sponge, cloth and paper, graphite and reticulated vitreous carbon (RVC), Co and FeCoTMPP, and platinised carbon and titanium.
Abstract: BACKGROUND: Marine sediment microbial fuel cells (MFC) utilise oxidisable carbon compounds and other components present in sediments on ocean floors and similar environments to produce power in conjunction with, principally, oxygen reduction at the cathode in the overlying water. The aim of the work was to investigate a range of cathode materials for sediment MFC, to achieve relatively high levels of power. RESULTS: Cell potential and power density performance data are reported for sediment MFC using cathodes of: carbon sponge, cloth and paper, graphite and reticulated vitreous carbon (RVC), Co and Fe-Co tetramethoxyphenyl porphyrin (FeCoTMPP) and platinised carbon and titanium. The anode was graphite cloth. After a period of stabilisation, open circuit voltages of 700 mV and maximum power densities of 62 mW m−2 were obtained, using FeCoTMPP. Relatively low cost carbon cathodes gave power densities of around 30 mW m−2. CONCLUSIONS: The study has shown that low level power can be produced from marine sediments using MFC without separators between the fuel and seawater containing dissolved oxygen. Cathode performance was an important factor determining the power output. Electrocatalyst at the cathode improved performance: FeCoTMMP gave power densities of 60 mW m−2 which was twice that achieved with the best un-modified carbon. Copyright © 2008 Society of Chemical Industry

71 citations

Patent
10 Mar 2008
TL;DR: In this paper, a power control method for secondary batteries constituting, in a grid connection system supplying electric power to a power system by combining a power generator where output power fluctuates with a power storage compensator, the power storage compensated and compensating fluctuation of output power of the power generator.
Abstract: There is provided a power control method for secondary batteries constituting, in a grid connection system supplying electric power to a power system by combining a power generator where output power fluctuates with a power storage compensator, the power storage compensator and compensating fluctuation of output power of the power generator. The method includes the steps of: dividing the secondary batteries into a “constant power control” group and a “demand responsive” group, and distributing predetermined constant input-output power out of power to be input and output provided to all the secondary batteries in order to compensate fluctuation of output power of the power generator to the “constant power control group” and the remaining input-output power to the “demand responsive” group to control input-output power of the secondary batteries respectively depending on the belonging groups.

71 citations

Journal ArticleDOI
TL;DR: In this paper, the gate reverse breakdown and forward turn-on voltages are improved substantially by using the high-resistivity GaAs layer between the gate metal and the conducting channel, which is shown that a reverse bias of 42 V or forward bias of 9,3 V is needed to reach a gate current of 1 mA/mm of gate width.
Abstract: A GaAs layer grown by molecular beam epitaxy at 200 degrees C is used as the gate insulator for GaAs MISFETs. The gate reverse breakdown and forward turn-on voltages, are improved substantially by using the high-resistivity GaAs layer between the gate metal and the conducting channel. It is shown that a reverse bias of 42 V or forward bias of 9,3 V is needed to reach a gate current of 1 mA/mm of gate width. A MISFET having a gate of 1.5*600 mu m delivers an output power of 940 mW (1.57-W/mm power density) with 4.4-dB gain and 27.3% power added efficiency at 1.1 GHz. This is the highest power density reported for GaAs-based FETs. >

71 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
85% related
Thin film
275.5K papers, 4.5M citations
84% related
Carbon nanotube
109K papers, 3.6M citations
84% related
Graphene
144.5K papers, 4.9M citations
83% related
Silicon
196K papers, 3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023652
20221,294
2021519
2020594
2019595
2018600