scispace - formally typeset
Search or ask a question
Topic

Power density

About: Power density is a research topic. Over the lifetime, 9534 publications have been published within this topic receiving 197264 citations. The topic is also known as: volumic power & volume power density.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that the transition to a highly nonlinear rise in electrical conductivity, a signature event for the onset of the flash, occurs within a narrow range of power density.
Abstract: The large bank of data for ceramics from experiments in flash sintering reveal a surprising characteristic: that the transition to a highly nonlinear rise in electrical conductivity—a signature event for the onset of the flash—occurs within a narrow range of power density. This condition holds for ceramics that are semiconductors, ionic conductors, electronic conductors, and insulators.They flash at temperatures that range from 300°C to 1300°C, and at electric fields from 10 V/cm to over 1000 V/cm. Yet, the power expenditure at the transition for all of them still falls within this narrow range. This, rather uniform value of power dissipation suggests that Joule heating is a key factor in instigating the flash. A general formulation is developed to test if indeed Joule heating alone can lead to the progression of such nonlinear behavior. It is concluded that Joule heating is a necessary but not a sufficient condition for flash sintering.

118 citations

Journal ArticleDOI
01 Feb 2019-ACS Nano
TL;DR: A binder-free electrode that interconnects carbon-sheathed porous silicon nanowires into a coral-like network and shows fast charging performance coupled to high energy and power densities when integrated into a full cell with a high areal capacity loading is reported.
Abstract: Fast charging rate and large energy storage are becoming key elements for the development of next-generation batteries, targeting high-performance electric vehicles. Developing electrodes with high volumetric and gravimetric capacity that could be operated at a high rate is the most challenging part of this process. Using silicon as the anode material, which exhibits the highest theoretical capacity as a lithium-ion battery anode, we report a binder-free electrode that interconnects carbon-sheathed porous silicon nanowires into a coral-like network and shows fast charging performance coupled to high energy and power densities when integrated into a full cell with a high areal capacity loading. The combination of interconnected nanowires, porous structure, and a highly conformal carbon coating in a single system strongly promotes the reaction kinetics of the electrode. This leads to fast-charging capability while maintaining the integrity of the electrode without structural collapse and, thus, stable cycling performance without using binder and conductive additives. Specifically, this anode shows high specific capacities (over 1200 mAh g-1) at an ultrahigh charging rate of 7 C over 500 charge-discharge cycles. When coupled with a commercial LiCoO2 or LiFePO4 cathode in a full cell, it delivers a volumetric energy density of 1621 Wh L-1 with a LiCoO2 cathode and a power density of 7762 W L-1 with a LiFePO4 cathode.

118 citations

Journal ArticleDOI
TL;DR: In this article, a micron-sized plate-like copper-substituted layered P2-type Na0.67CuxMn1−xO2 is demonstrated to rapidly charge and discharge within 5 minutes while giving a capacity of more than 90 mA h g−1.
Abstract: While sodium-ion batteries (SIBs) are considered as a next-generation energy storage device because of the higher abundance and lower cost of sodium compared to those of lithium, developing high-power and stable cathode materials remains a great challenge. Here, micron-sized plate-like copper-substituted layered P2-type Na0.67CuxMn1−xO2 is demonstrated to rapidly charge and discharge within 5 minutes while giving a capacity of more than 90 mA h g−1, corresponding to a half-cell energy density of 260 W h (kg cathode)−1 at a power density of 3000 W (kg cathode)−1, which is comparable to that of high-power lithium-ion cathodes. The materials show excellent stability, retaining more than 70% of the initial capacity after 500 cycles at 1000 mA g−1. The good cycle and rate performances of the materials are attributed to copper in the lattice, which stabilizes the crystal structure, increases the average discharge potential and improves sodium transport. This makes Na0.67CuxMn1−xO2 an ideal choice as a cathode for high-power sodium-ion batteries.

117 citations

Journal ArticleDOI
01 Jan 2007
TL;DR: The design, construction, and testing of a small-scale STRETCH meat grinder system, which was successfully used to power a miniature railgun, is discussed.
Abstract: Advances in high-power-density batteries have rekindled interest in using inductive store as a pulse compression system. Although these batteries are considered very power dense, they lack over an order of magnitude of power density to drive a deployable electric gun. However, one can add an inductive circuit to a battery bank to make a hybrid system that has a much higher power density than batteries alone. A battery-inductor hybrid pulsed-power supply boasts several advantages over pulsed alternators, as inductors are static and relatively easy to cool. Inductors are potentially more energy dense than capacitors, making a battery-inductor hybrid pulsed-power supply an attractive alternative to capacitor-based pulsed-power supplies. The opening switch has been a major obstacle in previous inductive store projects, but in simulation, a new circuit topology-the Slow Transfer of Energy Through Capacitive Hybrid (STRETCH) meat grinder-greatly attenuates the problem. This paper discusses the design, construction, and testing of a small-scale STRETCH meat grinder system, which was successfully used to power a miniature railgun

117 citations

Journal ArticleDOI
Min Xi1, Yuliang Li1, Shuyong Shang1, Dai-Hong Li1, Yongxiang Yin1, Xiaoyan Dai1 
TL;DR: In this paper, aramid fiber samples are modified by air dielectric barrier discharge (DBD) plasma at atmospheric pressure, and the surface roughness is improved, the O/C atomic ratio is increased from 15.99% to 27.15% and surface wettability is also enhanced.
Abstract: Aramid fiber (AF) samples are modified by air dielectric barrier discharge (DBD) plasma at atmospheric pressure. Plasma discharge power density and sample treatment time are investigated as the major parameters. Modified AF is characterized by SEM, XPS and wettability tests. It is shown that the surface roughness is improved, the O/C atomic ratio is increased from 15.99% to 27.15%, and the surface wettability is also enhanced significantly. It is also found that the improvements of physical and chemical properties increased with increasing power density and treatment time. The experiment is operated in the case of continuous on-line processing with properly high speed of AF transmission. It is close to industrial production and application.

117 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
85% related
Thin film
275.5K papers, 4.5M citations
84% related
Carbon nanotube
109K papers, 3.6M citations
84% related
Graphene
144.5K papers, 4.9M citations
83% related
Silicon
196K papers, 3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023652
20221,294
2021519
2020594
2019595
2018600