scispace - formally typeset
Search or ask a question
Topic

Power density

About: Power density is a research topic. Over the lifetime, 9534 publications have been published within this topic receiving 197264 citations. The topic is also known as: volumic power & volume power density.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the performance of co-firing thin-film cells with cobalt catalyst-infiltrated supporting electrodes was examined using humidified hydrogen as a fuel, and the results demonstrate that cobalt catalysts can be effective and low-cost supporting electrodes for reduced temperature, thin film SOFCs.

100 citations

Journal ArticleDOI
TL;DR: Owing to the high capacitance and excellent rate performance of SiC-N-MnO2 and AC, as well as the synergistic effects of the two electrodes, a constructed asymmetric supercapacitor exhibited superior electrochemical performance.
Abstract: In order to achieve high energy and power densities, a high-voltage asymmetric electrochemical supercapacitor has been developed, with activated carbon (AC) as the negative electrode and a silicon carbide–MnO2 nanoneedle (SiC–N-MnO2) composite as the positive electrode. A neutral aqueous Na2SO4 solution was used as the electrolyte. SiC–N-MnO2 was prepared by packing growing MnO2 nanoneedle crystal species in only one direction on the silicon carbide surface. AC was oxidized by thermal treatment in order to introduce oxygen-containing functional groups. Owing to the high capacitance and excellent rate performance of SiC–N-MnO2 and AC, as well as the synergistic effects of the two electrodes, a constructed asymmetric supercapacitor exhibited superior electrochemical performance. The optimized asymmetric supercapacitor could be cycled reversibly in the voltage range from 0 to 1.9 V, and it exhibited a specific capacitance of 59.9 F g−1 at a scan rate of 2 mV s−1 and excellent energy density and power density (30.06 W h kg−1 and 113.92 W kg−1, respectively) with a specific capacitance loss of less than 3.1% after 1000 charge–discharge cycles, indicating excellent electrochemical stability. These encouraging results show great potential in terms of developing energy storage devices with high energy and power densities for practical applications.

100 citations

Journal ArticleDOI
TL;DR: In this paper, a self-sacrificed route to construct three dimensional conductive vanadium-based MOFs (V-MOFs, MIL-47) nanowire-bundle arrays on carbon nanotube fibers as advanced cathodes for aqueous Zn-ion batteries was reported.

100 citations

Proceedings ArticleDOI
23 Jun 2000
TL;DR: In this paper, a thin-film inductor and power IC are integrated in a monolithic DC-DC converter, and the authors describe the micro DCDC converter module utilizing this IC.
Abstract: In this paper, we report the newly developed DC-DC converter IC termed monolithic DC-DC converter, in which a thin-film inductor and power IC are integrated, and describe the micro DC-DC converter module utilizing this IC. The thin-film inductor used in the monolithic DC-DC converter was fabricated by RF sputtering, photosensitive polyimide lithography and electro-plating onto the power IC. The micro DC-DC converter module using the monolithic DC-DC converter achieved power density of 5.6 W/cm/sup 3/ at output power of 1 W and maximum efficiency of 83.3% at switching frequency of 3 MHz.

99 citations

Journal ArticleDOI
TL;DR: In this paper, an optimization procedure that automatically balances the switching frequency, semiconductor and passive losses, and thermal performance has been developed for maximizing the power density of a 5 kW telecom supply.
Abstract: The demand for decreasing cost and volume and also for increasing efficiency leads to a constantly increasing power density of converter systems. For maximizing the power density of a 5 kW telecom supply, an optimization procedure that automatically balances the switching frequency, semiconductor and passive losses, and thermal performance has been developed. This procedure and the belonging analytical converter and transformer models are presented in this paper. Moreover, the resulting optimized design, which has a power density of 10 kW/dm 3 and an efficiency of 94.5% at a height of 1 U, is presented.

99 citations


Network Information
Related Topics (5)
Oxide
213.4K papers, 3.6M citations
85% related
Thin film
275.5K papers, 4.5M citations
84% related
Carbon nanotube
109K papers, 3.6M citations
84% related
Graphene
144.5K papers, 4.9M citations
83% related
Silicon
196K papers, 3M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023652
20221,294
2021519
2020594
2019595
2018600