scispace - formally typeset
Search or ask a question
Topic

Power management

About: Power management is a research topic. Over the lifetime, 12216 publications have been published within this topic receiving 216679 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A whirlwind survey of energy harvesting can be found in this article, where the authors present a survey of recent advances in energy harvesting, spanning historic and current developments in sensor networks and mobile devices.
Abstract: Energy harvesting has grown from long-established concepts into devices for powering ubiquitously deployed sensor networks and mobile electronics. Systems can scavenge power from human activity or derive limited energy from ambient heat, light, radio, or vibrations. Ongoing power management developments enable battery-powered electronics to live longer. Such advances include dynamic optimization of voltage and clock rate, hybrid analog-digital designs, and clever wake-up procedures that keep the electronics mostly inactive. Exploiting renewable energy resources in the device's environment, however, offers a power source limited by the device's physical survival rather than an adjunct energy store. Energy harvesting's true legacy dates to the water wheel and windmill, and credible approaches that scavenge energy from waste heat or vibration have been around for many decades. Nonetheless, the field has encountered renewed interest as low-power electronics, wireless standards, and miniaturization conspire to populate the world with sensor networks and mobile devices. This article presents a whirlwind survey through energy harvesting, spanning historic and current developments.

2,497 citations

Proceedings ArticleDOI
09 Jun 2007
TL;DR: This paper presents the aggregate power usage characteristics of large collections of servers for different classes of applications over a period of approximately six months, and uses the modelling framework to estimate the potential of power management schemes to reduce peak power and energy usage.
Abstract: Large-scale Internet services require a computing infrastructure that can beappropriately described as a warehouse-sized computing system. The cost ofbuilding datacenter facilities capable of delivering a given power capacity tosuch a computer can rival the recurring energy consumption costs themselves.Therefore, there are strong economic incentives to operate facilities as closeas possible to maximum capacity, so that the non-recurring facility costs canbe best amortized. That is difficult to achieve in practice because ofuncertainties in equipment power ratings and because power consumption tends tovary significantly with the actual computing activity. Effective powerprovisioning strategies are needed to determine how much computing equipmentcan be safely and efficiently hosted within a given power budget.In this paper we present the aggregate power usage characteristics of largecollections of servers (up to 15 thousand) for different classes ofapplications over a period of approximately six months. Those observationsallow us to evaluate opportunities for maximizing the use of the deployed powercapacity of datacenters, and assess the risks of over-subscribing it. We findthat even in well-tuned applications there is a noticeable gap (7 - 16%)between achieved and theoretical aggregate peak power usage at the clusterlevel (thousands of servers). The gap grows to almost 40% in wholedatacenters. This headroom can be used to deploy additional compute equipmentwithin the same power budget with minimal risk of exceeding it. We use ourmodeling framework to estimate the potential of power management schemes toreduce peak power and energy usage. We find that the opportunities for powerand energy savings are significant, but greater at the cluster-level (thousandsof servers) than at the rack-level (tens). Finally we argue that systems needto be power efficient across the activity range, and not only at peakperformance levels.

2,047 citations

Proceedings Article
23 Jun 2010
TL;DR: A detailed analysis of the power consumption of a recent mobile phone, the Openmoko Neo Freerunner, measuring not only overall system power, but the exact breakdown of power consumption by the device's main hardware components.
Abstract: Mobile consumer-electronics devices, especially phones, are powered from batteries which are limited in size and therefore capacity. This implies that managing energy well is paramount in such devices. Good energy management requires a good understanding of where and how the energy is used. To this end we present a detailed analysis of the power consumption of a recent mobile phone, the Openmoko Neo Freerunner. We measure not only overall system power, but the exact breakdown of power consumption by the device's main hardware components. We present this power breakdown for micro-benchmarks as well as for a number of realistic usage scenarios. These results are validated by overall power measurements of two other devices: the HTC Dream and Google Nexus One. We develop a power model of the Freerunner device and analyse the energy usage and battery lifetime under a number of usage patterns. We discuss the significance of the power drawn by various components, and identify the most promising areas to focus on for further improvements of power management. We also analyse the energy impact of dynamic voltage and frequency scaling of the device's application processor.

1,579 citations

Journal ArticleDOI
TL;DR: In this paper, the authors have developed abstractions to characterize the complex time varying nature of such sources with analytically tractable models and use them to address key design issues.
Abstract: Power management is an important concern in sensor networks, because a tethered energy infrastructure is usually not available and an obvious concern is to use the available battery energy efficiently. However, in some of the sensor networking applications, an additional facility is available to ameliorate the energy problem: harvesting energy from the environment. Certain considerations in using an energy harvesting source are fundamentally different from that in using a battery, because, rather than a limit on the maximum energy, it has a limit on the maximum rate at which the energy can be used. Further, the harvested energy availability typically varies with time in a nondeterministic manner. While a deterministic metric, such as residual battery, suffices to characterize the energy availability in the case of batteries, a more sophisticated characterization may be required for a harvesting source. Another issue that becomes important in networked systems with multiple harvesting nodes is that different nodes may have different harvesting opportunity. In a distributed application, the same end-user performance may be achieved using different workload allocations, and resultant energy consumptions at multiple nodes. In this case, it is important to align the workload allocation with the energy availability at the harvesting nodes. We consider the above issues in power management for energy-harvesting sensor networks. We develop abstractions to characterize the complex time varying nature of such sources with analytically tractable models and use them to address key design issues. We also develop distributed methods to efficiently use harvested energy and test these both in simulation and experimentally on an energy-harvesting sensor network, prototyped for this work.

1,535 citations

Journal ArticleDOI
TL;DR: In this article, real and reactive power management strategies of EI-DG units in the context of a multiple DG microgrid system were investigated. And the results were used to discuss applications under various microgrid operating conditions.
Abstract: This paper addresses real and reactive power management strategies of electronically interfaced distributed generation (DG) units in the context of a multiple-DG microgrid system. The emphasis is primarily on electronically interfaced DG (EI-DG) units. DG controls and power management strategies are based on locally measured signals without communications. Based on the reactive power controls adopted, three power management strategies are identified and investigated. These strategies are based on 1) voltage-droop characteristic, 2) voltage regulation, and 3) load reactive power compensation. The real power of each DG unit is controlled based on a frequency-droop characteristic and a complimentary frequency restoration strategy. A systematic approach to develop a small-signal dynamic model of a multiple-DG microgrid, including real and reactive power management strategies, is also presented. The microgrid eigen structure, based on the developed model, is used to 1) investigate the microgrid dynamic behavior, 2) select control parameters of DG units, and 3) incorporate power management strategies in the DG controllers. The model is also used to investigate sensitivity of the design to changes of parameters and operating point and to optimize performance of the microgrid system. The results are used to discuss applications of the proposed power management strategies under various microgrid operating conditions

1,531 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
86% related
Network packet
159.7K papers, 2.2M citations
85% related
Wireless
133.4K papers, 1.9M citations
85% related
Voltage
296.3K papers, 1.7M citations
84% related
Wireless network
122.5K papers, 2.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202387
2022188
2021354
2020615
2019712
2018784