scispace - formally typeset
Search or ask a question
Topic

PowerPC

About: PowerPC is a research topic. Over the lifetime, 1184 publications have been published within this topic receiving 22297 citations. The topic is also known as: ppc.


Papers
More filters
DOI
01 Jan 2014
TL;DR: The essential part of this thesis focuses on the design, implementation, fabrication and high-temperature measurements of on-chip Latch based SRAM, PowerPC e200 based microcontroller, digital temperature sensor and Flash A/D converter.
Abstract: There is a growing demand for Systems-on-Chip, integrating microprocessors, on-chip memories, data converters and a variety of sensors, which are capable of reliable operation at high temperatures. For instance, modern aircraft industry demands microcontrollers and electric motors to operate at high temperatures, in order to replace present hydraulic structures. This thesis explains how to design digital SoC which are capable of reliable operation at high temperatures. The essential part of this thesis focuses on the design, implementation, fabrication and high-temperature measurements of on-chip Latch based SRAM, PowerPC e200 based microcontroller, digital temperature sensor and Flash A/D converter. Embedded on-chip SRAM modules are one of the most important components in the modern SoC. We analyze thermally-caused failures in the 6T SRAM cell and elaborate on its reliability. Further, we show that Latch based SRAM modules are preferable to 6T SRAM for reliable operation beyond 150C, by comparing two 1kB SRAM modules implemented in standard 0.18um SOI CMOS process. We demonstrate reliable SRAM operation at 275C (fmax = 10MHz, Ptot = 400mW), that is by far the highest reported operating temperature for digital on-chip SRAM module. Designing SoCs for reliable operation at elevated temperatures is a significant challenge, due to increased static leakage current, reduced carrier mobility, and increased electromigration. We propose to customize a PowerPC e200 based SoC by using a dynamically reconfigurable clock frequency, exhaustive clock gating, and electromigration-resistant power distribution network. We fabricated a 20x9mm2 chip implementing this design in 0.35um Bulk CMOS process. We present world’s first PowerPC based SoC for reliable operation at 225C (fmax = 30MHz, Ptot = 1.2W). This design outperforms previously reported PowerPC based SoCs, which are not operational at temperatures beyond 125C. The on-chip measurements of the p-n junction temperature allow reliability improvements for the SoC that operates at high temperatures. Low-resolution temperature measurements are efficiently used for adjusting the optimal operation frequency and supply voltage. We used the Time-to-Digital conversion technique to design a fully-digital temperature sensor. We designed and simulated a fully-digital 5bit temperature sensor for 10C resolution temperature measurements in between Tj,min = -45C and Tj,max = 125C. Further, using a single clock cycle Time-to-Digital conversion technique, we present a fully-digital 5bit Pulse based Flash ADC implemented in 0.18um Bulk CMOS process. Measurement results demonstrate the state-of-the-art power efficiency result of 450 fJ/conv (fmax = 83MHz, Ptot = 900uW).

3 citations

01 Jan 2001
TL;DR: In this paper, a distributed architecture utilizes SPARC AXi computers running Solaris to perform real-time image processing of sensor data and PowerPC-based computers running VxWorks to compute mirror commands.
Abstract: The National Ignition Facility (NIF) requires that pulses from each of the 192 laser beams be positioned on target with an accuracy of 50 um rms. Beam quality must be sufficient to focus a total of 1.8 MJ of 0.351-um light into a 600-um-diameter volume. An optimally flat beam wavefront can achieve this pointing and focusing accuracy. The control system corrects wavefront aberrations by performing closed-loop compensation during laser alignment to correct for gas density variations. Static compensation of flashlamp-induced thermal distortion is established just prior to the laser shot. The control system compensates each laser beam at 10 Hz by measuring the wavefront with a 77-lenslet Hartmann sensor and applying corrections with a 39-actuator deformable mirror. The distributed architecture utilizes SPARC AXi computers running Solaris to perform real-time image processing of sensor data and PowerPC-based computers running VxWorks to compute mirror commands. A single pair of SPARC and PowerPC processors accomplishes wavefront control for a group of eight beams. The software design uses proven adaptive optic control algorithms that are implemented in a multi-tasking environment to economically control the beam wavefronts in parallel. Prototype tests have achieved a closed-loop residual error of 0.03 waves rms.

3 citations

Journal Article
TL;DR: An effective hardware mechanism to communicate two independent processors which can not be operated together, such as the dual PowerPC 405 cores in the Xilinx ML310 system and a tool, called Golden-Finger, to dynamically adjust the scheduling policy of the process scheduler in Linux are proposed.
Abstract: Continuously requirements of high-performance computing make the computer system adopt more processors within a system to improve the parallelism and throughput. Although multiple processing cores are implemented in a computer system, the complicated hardware communication mechanism between processors will decrease the performance of overall system. Besides, the unsuitable process scheduling mechanism of conventional operating system can not fully utilize the computation power of additional processors. Accordingly, this paper provides two mechanisms to overcome the above challenges by using hardware and software mechanisms, respectively. In software aspect, we propose a tool, called Golden-Finger, to dynamically adjust the scheduling policy of the process scheduler in Linux. This software mechanism can improve the performance of the specified process by occupying a processor solely. In hardware aspect, we design an effective hardware mechanism, called Back-Door, to communicate two independent processors which can not be operated together, such as the dual PowerPC 405 cores in the Xilinx ML310 system. The experimental results reveal that the two mechanisms can obtain significant performance enhancements.

3 citations

Proceedings ArticleDOI
16 Oct 2002
TL;DR: This paper presents the current on-going research efforts in which a real-time hyperspectral data compression system developed and demonstrated for a military customer is being ported to an embedded platform fit for deployment onto a tactical platform such as an unmanned aerial vehicle (UAV).
Abstract: Summary form only given. This paper presents the current on-going research efforts in which a real-time hyperspectral data compression system developed and demonstrated for a military customer is being ported to an embedded platform fit for deployment onto a tactical platform such as an unmanned aerial vehicle (UAV). The original system consists of a PC host containing multiple PCI boards with SHARC processors interfaced to a state-of-the-art hyperspectral image (HSI) sensor. The resulting embedded implementation will leverage a scalable multiprocessing architecture. Processing nodes based on PowerPC processors with AltiVec technology provide the compute power, while the scalable standard RACEway fabric (ANSI/VITA 5-1994) handles the large interprocessor communication bandwidth. The motivation for this effort is derived from the increased interest in fielding hyperspectral sensors in the intelligence, surveillance, and reconnaissance missions of the military. Historically, there has been significant work performed to develop various data link systems. Data transmission requirements have grown quickly to whatever capacity was available in the data link. With hyperspectral data, this problem becomes even more significant. Sensors such as the EO/IR packages generate large two-dimensional (2-D) data sets. There are many standards developed to compress 2-D data sets, including the ubiquitous JPEG family of routines. With hyperspectral data, there is now a third dimension contained in the collection, that being the spectral components associated with each spatial pixel element. No longer do 2-D approaches apply efficiently. The "data cube" produced by an HSI sensor has correlation components in spatial, temporal, and spectral dimension. The principle component transformation algorithm is one such routine that can work within the data cube environment. The results of this port to a deployable, embedded system architecture will be a scalable product that can be integrated into a larger system that may provide actual data exploitation either on the unmanned platform or on the ground element. Performance characteristics between the two implementations are compared. An attempt to "generalize" the parallelism to increase the scalability to any number of available processing elements is a critical objective to increase the utility of this approach. The final product of this work will be the creation of a commercial off-the-shelf (COTS) subsystem that can be leveraged by system developers.

3 citations

01 Jan 2006
TL;DR: This thesis report presents all the above topics of Operating System installation, video interface software development, contrast enhancement hardware implementation, and hardware core’s Linux device driver programming, and a measurement result is presented to show the performance of hardware acceleration and processor load reduction.
Abstract: Xilinx Virtex II Pro FPGA with integrated PowerPC core offers an opportunity to implementing a software and hardware codesign. The software application executes on the PowerPC processor while the FPGA implementation of hardware cores coprocess with PowerPC to achieve the goals of acceleration. Another benefit of coprocessing with the hardware acceleration core is the release of processor load. This thesis demonstrates such an FPGA based software and hardware codesign by implementing a real time video processing project on Xilinx ML310 development platform which is featured with a Xilinx Virtex II Pro FPGA. The software part in this project performs video and memory interface task which includes image capture from camera, the store of image into on-board memory, and the display of image on a screen. The hardware coprocessing core does a contrast enhancement function on the input image. To ease the software development and make this project flexible for future extension, an Embedded Operating System MontaVista Linux is installed on the ML310 platform. Thus the software video interface application is developed using Linux programming method, for example the use of Video4Linux API. The last but not the least implementation topic is the software and hardware interface, which is the Linux device driver for the hardware core. This thesis report presents all the above topics of Operating System installation, video interface software development, contrast enhancement hardware implementation, and hardware core’s Linux device driver programming. After this, a measurement result is presented to show the performance of hardware acceleration and processor load reduction, by comparing to the results from a software implementation of the same contrast enhancement function. This is followed by a discussion chapter, including the performance analysis, current design’s limitations and proposals for improvements. This report is ended with an outlook from this master thesis.

3 citations


Network Information
Related Topics (5)
Scalability
50.9K papers, 931.6K citations
77% related
CMOS
81.3K papers, 1.1M citations
77% related
Software
130.5K papers, 2M citations
77% related
Integrated circuit
82.7K papers, 1M citations
76% related
Cache
59.1K papers, 976.6K citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232
20226
20215
20208
201916
201823