scispace - formally typeset
Search or ask a question
Topic

PRC2

About: PRC2 is a research topic. Over the lifetime, 1094 publications have been published within this topic receiving 103277 citations. The topic is also known as: PRC2.


Papers
More filters
Journal ArticleDOI
01 Nov 2002-Science
TL;DR: The purification and characterization of an EED-EZH2 complex, the human counterpart of the Drosophila ESC-E(Z) complex, is reported, and it is demonstrated that the complex specifically methylates nucleosomal histone H3 at lysine 27 (H3-K27).
Abstract: Polycomb group (PcG) proteins play important roles in maintaining the silent state of HOX genes. Recent studies have implicated histone methylation in long-term gene silencing. However, a connection between PcG-mediated gene silencing and histone methylation has not been established. Here we report the purification and characterization of an EED-EZH2 complex, the human counterpart of the Drosophila ESC-E(Z) complex. We demonstrate that the complex specifically methylates nucleosomal histone H3 at lysine 27 (H3-K27). Using chromatin immunoprecipitation assays, we show that H3-K27 methylation colocalizes with, and is dependent on, E(Z) binding at an Ultrabithorax (Ubx) Polycomb response element (PRE), and that this methylation correlates with Ubx repression. Methylation on H3-K27 facilitates binding of Polycomb (PC), a component of the PRC1 complex, to histone H3 amino-terminal tail. Thus, these studies establish a link between histone methylation and PcG-mediated gene silencing.

3,565 citations

Journal ArticleDOI
06 Aug 2010-Science
TL;DR: The results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone modifications on target genes.
Abstract: Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance. Here, we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone modification complexes. A 5' domain of HOTAIR binds polycomb repressive complex 2 (PRC2), whereas a 3' domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two distinct complexes enables RNA-mediated assembly of PRC2 and LSD1 and coordinates targeting of PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4 demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, thereby specifying the pattern of histone modifications on target genes.

2,946 citations

Journal ArticleDOI
20 Jan 2011-Nature
TL;DR: This work has uncovered a role for non-coding RNA in the recruitment of PRC2 to target genes, and expanded the perspectives on its function and regulation.
Abstract: Polycomb group proteins maintain the gene-expression pattern of different cells that is set during early development by regulating chromatin structure. In mammals, two main Polycomb group complexes exist — Polycomb repressive complex 1 (PRC1) and 2 (PRC2). PRC1 compacts chromatin and catalyses the monoubiquitylation of histone H2A. PRC2 also contributes to chromatin compaction, and catalyses the methylation of histone H3 at lysine 27. PRC2 is involved in various biological processes, including differentiation, maintaining cell identity and proliferation, and stem-cell plasticity. Recent studies of PRC2 have expanded our perspectives on its function and regulation, and uncovered a role for non-coding RNA in the recruitment of PRC2 to target genes.

2,783 citations

Journal ArticleDOI
18 May 2006-Nature
TL;DR: It is shown that PcG proteins directly repress a large cohort of developmental regulators in murine ES cells, the expression of which would otherwise promote differentiation, and dynamic repression of developmental pathways by Polycomb complexes may be required for maintaining ES cell pluripotency and plasticity during embryonic development.
Abstract: The mechanisms by which embryonic stem (ES) cells self-renew while maintaining the ability to differentiate into virtually all adult cell types are not well understood. Polycomb group (PcG) proteins are transcriptional repressors that help to maintain cellular identity during metazoan development by epigenetic modification of chromatin structure. PcG proteins have essential roles in early embryonic development and have been implicated in ES cell pluripotency, but few of their target genes are known in mammals. Here we show that PcG proteins directly repress a large cohort of developmental regulators in murine ES cells, the expression of which would otherwise promote differentiation. Using genome-wide location analysis in murine ES cells, we found that the Polycomb repressive complexes PRC1 and PRC2 co-occupied 512 genes, many of which encode transcription factors with important roles in development. All of the co-occupied genes contained modified nucleosomes (trimethylated Lys 27 on histone H3). Consistent with a causal role in gene silencing in ES cells, PcG target genes were de-repressed in cells deficient for the PRC2 component Eed, and were preferentially activated on induction of differentiation. Our results indicate that dynamic repression of developmental pathways by Polycomb complexes may be required for maintaining ES cell pluripotency and plasticity during embryonic development.

2,549 citations


Network Information
Related Topics (5)
Transcription factor
82.8K papers, 5.4M citations
90% related
Regulation of gene expression
85.4K papers, 5.8M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
87% related
Gene expression
113.3K papers, 5.5M citations
85% related
Cellular differentiation
90.9K papers, 6M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023188
2022222
2021115
2020114
2019100
201888