scispace - formally typeset
Search or ask a question
Topic

PRDM16

About: PRDM16 is a research topic. Over the lifetime, 808 publications have been published within this topic receiving 87318 citations. The topic is also known as: CMD1LL & LVNC8.


Papers
More filters
Journal ArticleDOI
TL;DR: Transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob) found that the expression of 1,304 transcripts correlated significantly with body mass.
Abstract: Obesity alters adipose tissue metabolic and endocrine function and leads to an increased release of fatty acids, hormones, and proinflammatory molecules that contribute to obesity associated complications. To further characterize the changes that occur in adipose tissue with increasing adiposity, we profiled transcript expression in perigonadal adipose tissue from groups of mice in which adiposity varied due to sex, diet, and the obesity-related mutations agouti (Ay) and obese (Lepob). We found that the expression of 1,304 transcripts correlated significantly with body mass. Of the 100 most significantly correlated genes, 30% encoded proteins that are characteristic of macrophages and are positively correlated with body mass. Immunohistochemical analysis of perigonadal, perirenal, mesenteric, and subcutaneous adipose tissue revealed that the percentage of cells expressing the macrophage marker F4/80 (F4/80+) was significantly and positively correlated with both adipocyte size and body mass. Similar relationships were found in human subcutaneous adipose tissue stained for the macrophage antigen CD68. Bone marrow transplant studies and quantitation of macrophage number in adipose tissue from macrophage-deficient (Csf1op/op) mice suggest that these F4/80+ cells are CSF-1 dependent, bone marrow-derived adipose tissue macrophages. Expression analysis of macrophage and nonmacrophage cell populations isolated from adipose tissue demonstrates that adipose tissue macrophages are responsible for almost all adipose tissue TNF-alpha expression and significant amounts of iNOS and IL-6 expression. Adipose tissue macrophage numbers increase in obesity and participate in inflammatory pathways that are activated in adipose tissues of obese individuals.

8,902 citations

Journal ArticleDOI
TL;DR: The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Abstract: Cannon, Barbara, and Jan Nedergaard. Brown Adipose Tissue: Function and Physiological Significance. Physiol Rev 84: 277–359, 2004; 10.1152/physrev.00015.2003.—The function of brown adipose tissue i...

5,470 citations

Journal ArticleDOI
TL;DR: Defined regions of functionally active brown adipose tissue are present in adult humans, are more frequent in women than in men, and may be quantified noninvasively with the use of (18)F-FDG PET-CT.
Abstract: Background Obesity results from an imbalance between energy intake and expenditure. In rodents and newborn humans, brown adipose tissue helps regulate energy expenditure by thermogenesis mediated by the expression of uncoupling protein 1 (UCP1), but brown adipose tissue has been considered to have no physiologic relevance in adult humans. Methods We analyzed 3640 consecutive 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomographic and computed tomographic (PET–CT) scans performed for various diagnostic reasons in 1972 patients for the presence of substantial depots of putative brown adipose tissue. Such depots were defined as collections of tissue that were more than 4 mm in diameter, had the density of adipose tissue according to CT, and had maximal standardized uptake values of 18F-FDG of at least 2.0 g per milliliter, indicating high metabolic activity. Clinical indexes were recorded and compared with those of date-matched controls. Immunostaining for UCP1 was performed on biopsy specimens from t...

3,805 citations

Journal ArticleDOI
20 Mar 1998-Cell
TL;DR: Results indicate that PGC-1 plays a key role in linking nuclear receptors to the transcriptional program of adaptive thermogenesis.

3,654 citations

Journal ArticleDOI
TL;DR: Brown adipose tissue may be metabolically important in men, and the fact that it is reduced yet present in most overweight or obese subjects may make it a target for the treatment of obesity.
Abstract: Background Studies in animals indicate that brown adipose tissue is important in the regulation of body weight, and it is possible that individual variation in adaptive thermogenesis can be attributed to variations in the amount or activity of brown adipose tissue. Until recently, the presence of brown adipose tissue was thought to be relevant only in small mammals and infants, with negligible physiologic relevance in adult humans. We performed a systematic examination of the presence, distribution, and activity of brown adipose tissue in lean and obese men during exposure to cold temperature. Brown-adipose-tissue activity was studied in relation to body composition and energy metabolism. Methods We studied 24 healthy men — 10 who were lean (body-mass index [BMI] [the weight in kilograms divided by the square of the height in meters], <25) and 14 who were overweight or obese (BMI, ≥25) — under thermoneutral conditions (22°C) and during mild cold exposure (16°C). Putative brown-adipose-tissue activity was ...

3,114 citations


Network Information
Related Topics (5)
Insulin
124.2K papers, 5.1M citations
82% related
Signal transduction
122.6K papers, 8.2M citations
80% related
Transcription factor
82.8K papers, 5.4M citations
80% related
Protein kinase A
68.4K papers, 3.9M citations
80% related
Regulation of gene expression
85.4K papers, 5.8M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202341
202275
202145
202040
201947
201859