scispace - formally typeset
Search or ask a question

Showing papers on "Precipitation published in 2004"


Journal ArticleDOI
20 Aug 2004-Science
TL;DR: A multimodel estimation of the regions on Earth where precipitation is affected by soil moisture anomalies during Northern Hemisphere summer indicates potential benefits of this estimation may include improved seasonal rainfall forecasts.
Abstract: Previous estimates of land-atmosphere interaction (the impact of soil moisture on precipitation) have been limited by a lack of observational data and by the model dependence of computational estimates. To counter the second limitation, a dozen climate-modeling groups have recently performed the same highly controlled numerical experiment as part of a coordinated comparison project. This allows a multimodel estimation of the regions on Earth where precipitation is affected by soil moisture anomalies during Northern Hemisphere summer. Potential benefits of this estimation may include improved seasonal rainfall forecasts.

2,522 citations


Journal ArticleDOI
TL;DR: In this paper, a revised approach to cloud microphysical processes in a commonly used bulk microphysics parameterization and the importance of correctly representing properties of cloud ice are discussed, and the impact of sedimentation of ice crystals is also investigated.
Abstract: A revised approach to cloud microphysical processes in a commonly used bulk microphysics parameterization and the importance of correctly representing properties of cloud ice are discussed. Several modifications are introduced to more realistically simulate some of the ice microphysical processes. In addition to the assumption that ice nuclei number concentration is a function of temperature, a new and separate assumption is developed in which ice crystal number concentration is a function of ice amount. Related changes in ice microphysics are introduced, and the impact of sedimentation of ice crystals is also investigated. In an idealized thunderstorm simulation, the distribution of simulated clouds and precipitation is sensitive to the assumptions in microphysical processes, whereas the impact of the sedimentation of cloud ice is small. Overall, the modifications introduced to microphysical processes play a role in significantly reducing cloud ice and increasing snow at colder temperatures and ...

2,277 citations


Journal ArticleDOI
27 Feb 2004-Science
TL;DR: Heavy smoke from forest fires in the Amazon was observed to reduce cloud droplet size and so delay the onset of precipitation, which affects the water cycle, the pollution burden of the atmosphere, and the dynamics of atmospheric circulation.
Abstract: Heavy smoke from forest fires in the Amazon was observed to reduce cloud droplet size and so delay the onset of precipitation from 1.5 kilometers above cloud base in pristine clouds to more than 5 kilometers in polluted clouds and more than 7 kilometers in pyro-clouds. Suppression of low-level rainout and aerosol washout allows transport of water and smoke to upper levels,where the clouds appear “smoking” as they detrain much of the pollution. Elevating the onset of precipitation allows invigoration of the updrafts,causing intense thunderstorms,large hail,and greater likelihood for overshooting cloud tops into the stratosphere. There,detrained pollutants and water vapor would have profound radiative impacts on the climate system. The invigorated storms release the latent heat higher in the atmosphere. This should substantially affect the regional and global circulation systems. Together,these processes affect the water cycle,the pollution burden of the atmosphere,and the dynamics of atmospheric circulation. Several hundred thousand deforestation and agricultural fires burn in Amazonia during the dry season each year, covering vast areas with dense smoke (1, 2). The smoke’s radiative impact suppresses surface heating and evaporation and stabilizes the lower troposphere. In turn, this suppresses the formation of convective clouds and precipitation and thus slows down the hydrological cycle (3). The microphysical effects of the aerosols on clouds and precipitation are no less important but have until now only been inferred from modeling and satellite observations. Convective clouds forming in smoky air show substantially reduced droplet size compared to that of similar clouds in clean air (4), with a mean satelliteretrieved effective droplet radius of 9 m in smoky clouds compared to 14 mi n clean clouds (5). This reduction of cloud droplet size by smoke is associated with an inhibition of the onset of precipitation radar echoes up to heights of 6.5 km, compared to 3 km in smoke-free clouds (6, 7). Here, we report in situ measurements for

1,355 citations


Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the sensitivity of winter precipitation to various aspects of a bulk, mixed-phase microphysical parameterization found in three widely used mesoscale models [the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5), the Rapid Update Cycle (RUC), and the Weather Research and Forecast (WRF) model].
Abstract: This study evaluates the sensitivity of winter precipitation to numerous aspects of a bulk, mixed-phase microphysical parameterization found in three widely used mesoscale models [the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), the Rapid Update Cycle (RUC), and the Weather Research and Forecast (WRF) model]. Sensitivities of the microphysics to primary ice initiation, autoconversion, cloud condensation nuclei (CCN) spectra, treatment of graupel, and parameters controlling the snow and rain size distributions are tested. The sensitivity tests are performed by simulating various cloud depths (with different cloud-top temperatures) using flow over an idealized two-dimensional mountain. The height and width of the two-dimensional barrier are designed to reproduce an updraft pattern with extent and magnitude consistent with documented freezing-drizzle cases. By increasing the moisture profile to saturation at low temperatures, a deep, ...

1,035 citations


Journal ArticleDOI
10 Jun 2004-Nature
TL;DR: It is shown that RUE decreases across biomes as mean annual precipitation increases, and during the driest years at each site, there is convergence to a common maximum RUE (RUEmax) that is typical of arid ecosystems.
Abstract: Water availability limits plant growth and production in almost all terrestrial ecosystems. However, biomes differ substantially in sensitivity of aboveground net primary production (ANPP) to between-year variation in precipitation. Average rain-use efficiency (RUE; ANPP/precipitation) also varies between biomes, supposedly because of differences in vegetation structure and/or biogeochemical constraints. Here we show that RUE decreases across biomes as mean annual precipitation increases. However, during the driest years at each site, there is convergence to a common maximum RUE (RUE(max)) that is typical of arid ecosystems. RUE(max) was also identified by experimentally altering the degree of limitation by water and other resources. Thus, in years when water is most limiting, deserts, grasslands and forests all exhibit the same rate of biomass production per unit rainfall, despite differences in physiognomy and site-level RUE. Global climate models predict increased between-year variability in precipitation, more frequent extreme drought events, and changes in temperature. Forecasts of future ecosystem behaviour should take into account this convergent feature of terrestrial biomes.

1,005 citations


Journal ArticleDOI
TL;DR: The potential effects of climate change on the hydrology and water resources of the Colorado River basin are assessed by comparing simulated hydrologic and water resource scenarios derived from downscaled climate simulations of the U.S. Department of Energy/National Center for Atmospheric Research Parallel Climate Model (PCM) to scenarios driven by observed historical (1950-1999) climate as discussed by the authors.
Abstract: The potential effects of climate change on the hydrology and water resources of the Colorado River basin are assessed by comparing simulated hydrologic and water resources scenarios derived from downscaled climate simulations of the U.S. Department of Energy/National Center for Atmospheric Research Parallel Climate Model (PCM) to scenarios driven by observed historical (1950–1999) climate. PCM climate scenarios include an ensemble of three 105-year future climate simulations based on projected `business-as-usual'(BAU) greenhouse gas emissions and a control climate simulation based on static 1995 greenhouse gas concentrations. Downscaled transient temperature and precipitation sequences were extracted from PCM simulations, and were used to drive the Variable Infiltration Capacity (VIC) macroscale hydrology model to produce corresponding streamflow sequences. Results for the BAU scenarios were summarized into Periods 1, 2, and 3 (2010–2039,2040–2069, 2070–2098). Average annual temperature changes for the Colorado Riverbasin were 0.5 °C warmer for control climate, and 1.0, 1.7, and 2.4 °C warmer for Periods 1–3, respectively, relative to the historicalclimate. Basin-average annual precipitation for the control climate was slightly(1%) less than for observed historical climate, and 3, 6, and 3%less for future Periods 1–3, respectively. Annual runoff in the controlrun was about 10% lower than for simulated historical conditions, and 14, 18, and 17% less for Periods 1–3, respectively. Analysis of watermanagement operations using a water management model driven by simulated streamflows showed that streamflows associated with control and future BAU climates would significantly degrade the performance of the water resourcessystem relative to historical conditions, with average total basin storage reduced by 7% for the control climate and 36, 32 and 40% for Periods 1–3, respectively. Releases from Glen Canyon Dam to the LowerBasin (mandated by the Colorado River Compact) were met in 80% of years for the control climate simulation (versus 92% in the historical climate simulation), and only in 59–75% of years for the future climate runs. Annual hydropower output was also significantly reduced for the control and future climate simulations. The high sensitivity of reservoir system performance for future climate is a reflection of the fragile equilibrium that now exists in operation of the system, with system demands only slightly less than long-term mean annual inflow.

984 citations


Journal ArticleDOI
TL;DR: In this article, the authors explored the sensitivity of this result to the choice of climate model used to define the CO2-warmed environment and to a nested regional model that simulates the hurricanes.
Abstract: Previous studies have found that idealized hurricanes, simulated under warmer, high-CO2 conditions, are more intense and have higher precipitation rates than under present-day conditions. The present study explores the sensitivity of this result to the choice of climate model used to define the CO2-warmed environment and to the choice of convective parameterization used in the nested regional model that simulates the hurricanes. Approximately 1300 five-day idealized simulations are performed using a higher-resolution version of the GFDL hurricane prediction system (grid spacing as fine as 9 km, with 42 levels). All storms were embedded in a uniform 5 m s−1 easterly background flow. The large-scale thermodynamic boundary conditions for the experiments— atmospheric temperature and moisture profiles and SSTs—are derived from nine different Coupled Model Intercomparison Project (CMIP2+) climate models. The CO2-induced SST changes from the global climate models, based on 80-yr linear trends from +1% y...

743 citations


Journal ArticleDOI
TL;DR: The analyses indicate that rainfall variability is best understood in terms of sequences of rainfall events that produce biologically-significant ‘pulses’ of soil moisture recharge, as opposed to individual rain events.
Abstract: The ‘pulse–reserve’ conceptual model—arguably one of the most-cited paradigms in aridland ecology—depicts a simple, direct relationship between rainfall, which triggers pulses of plant growth, and reserves of carbon and energy. While the heuristics of ‘pulses’, ‘triggers’ and ‘reserves’ are intuitive and thus appealing, the value of the paradigm is limited, both as a conceptual model of how pulsed water inputs are translated into primary production and as a framework for developing quantitative models. To overcome these limitations, we propose a revision of the pulse–reserve model that emphasizes the following: (1) what explicitly constitutes a biologically significant ‘rainfall pulse’, (2) how do rainfall pulses translate into usable ‘soil moisture pulses’, and (3) how are soil moisture pulses differentially utilized by various plant functional types (FTs) in terms of growth? We explore these questions using the patch arid lands simulation (PALS) model for sites in the Mojave, Sonoran, and Chihuahuan deserts of North America. Our analyses indicate that rainfall variability is best understood in terms of sequences of rainfall events that produce biologically-significant ‘pulses’ of soil moisture recharge, as opposed to individual rain events. In the desert regions investigated, biologically significant pulses of soil moisture occur in either winter (October–March) or summer (July–September), as determined by the period of activity of the plant FTs. Nevertheless, it is difficult to make generalizations regarding specific growth responses to moisture pulses, because of the strong effects of and interactions between precipitation, antecedent soil moisture, and plant FT responses, all of which vary among deserts and seasons. Our results further suggest that, in most soil types and in most seasons, there is little separation of soil water with depth. Thus, coexistence of plant FTs in a single patch as examined in this PALS study is likely to be fostered by factors that promote: (1) separation of water use over time (seasonal differences in growth), (2) relative differences in the utilization of water in the upper soil layers, or (3) separation in the responses of plant FTs as a function of preceding conditions, i.e., the physiological and morphological readiness of the plant for water-uptake and growth. Finally, the high seasonal and annual variability in soil water recharge and plant growth, which result from the complex interactions that occur as a result of rainfall variability, antecedent soil moisture conditions, nutrient availability, and plant FT composition and cover, call into question the use of simplified vegetation models in forecasting potential impacts of climate change in the arid zones in North America.

654 citations


Journal ArticleDOI
TL;DR: For example, in the United States, precipitation, temperature, streamflow, and heavy and very heavy precipitation have increased during the twentieth century as mentioned in this paper, making the region more susceptible to forest fires.
Abstract: Over the contiguous United States, precipitation, temperature, streamflow, and heavy and very heavy precipitation have increased during the twentieth century. In the east, high streamflow has increased as well. Soil wetness (as described by the Keetch–Byram Drought index) has increased over the northern and eastern regions of the United States, but in the southwestern quadrant of the country soil dryness has increased, making the region more susceptible to forest fires. In addition to these changes during the past 50 yr, increases in evaporation, near-surface humidity, total cloud cover, and low stratiform and cumulonimbus clouds have been observed. Snow cover has diminished earlier in the year in the west, and a decrease in near-surface wind speed has also occurred in many areas. Much of the increase in heavy and very heavy precipitation has occurred during the past three decades.

653 citations


Journal ArticleDOI
TL;DR: The relationship between water vapor path W and surface precipitation rate P over tropical oceanic regions was analyzed using 4 yr of gridded daily SSM/I satellite microwave radiometer data.
Abstract: The relationship between water vapor path W and surface precipitation rate P over tropical oceanic regions is analyzed using 4 yr of gridded daily SSM/I satellite microwave radiometer data. A tight monthly mean relationship P (mm day21) 5 exp[11.4(r 2 0.522)] for all tropical ocean regions and seasons is found between P and a column-relative humidity r obtained by dividing W by the corresponding saturation water vapor path. A similar relation, albeit with more scatter, also holds at daily time scales, and can be interpreted as a moisture adjustment time scale of 12 h for convective rainfall to affect humidity anomalies on 300-km space scales. Cross-spectral analysis shows statistically significant covariability of actual and r-predicted precipitation at all frequencies, with negligible phase lag. The correlation of actual and r-predicted precipitation exceeds 0.5 on intraseasonal and longer time scales. The SSM/I retrievals of W and P are found to be skillful even at daily time scales when compared with in situ radiosonde and radar-derived area-averaged precipitation data from Kwajalein Island, but the microwave estimates of daily P scatter considerably about the radar estimates (which are considered to be more reliable). Using the radar-derived precipitation in combination with microwave-derived W yields a daily r‐P relationship at Kwajalein similar to that derived solely from microwave measurements, but with somewhat less P associated with the highest values of r. This emphasizes that the absolute calibration of the r‐P relationship is somewhat dependent on the datasets used to derive r and especially P. Nevertheless, the results provide a useful constraint on conceptual models and parameterizations of tropical deep convection.

595 citations


Journal Article
TL;DR: In this paper, the authors reviewed several recent studies conducted by the authors that address the potential effects of climate change on soil erosion rates and showed that erosion and runoff will increase at an even greater rate: the ratio of erosion increase to annual rainfall increase is on the order of 1.7.
Abstract: Global warming is expected to lead to a more vigorous hydrological cycle, including more total rainfall and more frequent high intensity rainfall events. Rainfall amounts and intensities increased on average in the United States during the 20th century, and according to climate change models they are expected to continue to increase during the 21st century. These rainfall changes, along with expected changes in temperature, solar radiation, and atmospheric C02 concentrations, will have significant impacts on soil erosion rates. The processes involved in the impact of climate change on soil erosion by water are complex, involving changes in rainfall amounts and intensities, number of days of precipitation, ratio of rain to snow, plant biomass production, plant residue decomposition rates, soil microbial activity, evapo-transpiration rates, and shifts in land use necessary to accommodate a new climatic regime. This paper reviews several recent studies conducted by the authors that address the potential effects of climate change on soil erosion rates. The results show cause for concern. Rainfall erosivity levels may be on the rise across much of the United States. Where rainfall amounts increase, erosion and runoff will increase at an even greater rate: the ratio of erosion increase to annual rainfall increase is on the order of 1.7. Even in cases where annual rainfall would decrease, system feedbacks related to decreased biomass production could lead to greater susceptibility of the soil to erode. Results also show how farmers9 response to climate change can potentially exacerbate, or ameliorate, the changes in erosion rates expected.

Journal ArticleDOI
TL;DR: In this article, a basic analysis is presented for a series of regional climate change simulations that were conducted by the Swedish Rossby Centre and contribute to the PRUDENCE (Prediction of regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and effects) project.
Abstract: A basic analysis is presented for a series of regional climate change simulations that were conducted by the Swedish Rossby Centre and contribute to the PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects) project For each of the two driving global models HadAM3H and ECHAM4/OPYC3, a 30-year control run and two 30-year scenario runs (based on the SRES A2 and B2 emission scenarios) were made with the regional model In this way, four realizations of climate change from 1961–1990 to 2071–2100 were obtained The simulated changes are larger for the A2 than the B2 scenario (although with few qualitative differences) and in most cases in the ECHAM4/OPYC3-driven (RE) than in the HadAM3H-driven (RH) regional simulations In all the scenario runs, the warming in northern Europe is largest in winter or late autumn In central and southern Europe, the warming peaks in summer when it locally reaches 10 °C in the RE-A2 simulation and 6–7 °C in the RH-A2 and RE-B2 simulations The four simulations agree on a general increase in precipitation in northern Europe especially in winter and on a general decrease in precipitation in southern and central Europe in summer, but the magnitude and the geographical patterns of the change differ markedly between RH and RE This reflects very different changes in the atmospheric circulation during the winter half-year, which also lead to quite different simulated changes in windiness All four simulations show a large increase in the lowest minimum temperatures in northern, central and eastern Europe, most likely due to reduced snow cover Extreme daily precipitation increases even in most of those areas where the mean annual precipitation decreases

Journal ArticleDOI
TL;DR: The influence of large-scale atmospheric circulation at several tropospheric levels on wet season precipitation over 292 sites across the Mediterranean area is assessed in this article, where a statistical downscaling model is designed with an objective methodology based on empirical orthogonal functions and canonical correlation analysis (CCA).
Abstract: The influence of the large-scale atmospheric circulation at several tropospheric levels on wet season precipitation over 292 sites across the Mediterranean area is assessed. A statistical downscaling model is designed with an objective methodology based on empirical orthogonal functions and canonical correlation analysis (CCA) and tested by means of cross-validation. In all 30% of the total Mediterranean October to March precipitation variability can be accounted for by the combination of four large-scale geopotential height fields and sea level pressure. The Mediterranean sea surface temperatures seem to be less relevant to explain precipitation variability at interannual time scale. It is shown that interdecadal changes in the first CCA mode are related to variations in the North Atlantic Oscillation index and responsible for comparable time scale variations of the Mediterranean precipitation throughout the twentieth century. The analysis reveals that since the mid-nineteenth century precipitation steadily increased with a maximum in the 1960s and decreased since then. The second half of the twentieth century shows a general downward trend of 2.2 mm·month–1·decade–1.

Journal ArticleDOI
TL;DR: In this article, Westman et al. investigated whether some fraction of intercepted fog water might be directly absorbed through leaf surfaces and if so, the importance of this to the water relations physiology of coast redwood, Sequoia sempervirens.
Abstract: Fog is a defining feature of the coastal California redwood forest and fog inputs via canopy drip in summer can constitute 30% or more of the total water input each year. A great deal of occult precipitation (fog and light rain) is retained in redwood canopies, which have some of the largest leaf area indices known (Westman & Whittaker, Journal of Ecology 63, 493–520, 1975). An investigation was carried out to determine whether some fraction of intercepted fog water might be directly absorbed through leaf surfaces and if so, the importance of this to the water relations physiology of coast redwood, Sequoia sempervirens. An array of complimentary techniques were adopted to demonstrate that fog is absorbed directly by S. sempervirens foliage. Xylem sap transport reversed direction during heavy fog, with instantaneous flow rates in the direction of the soil peaking at approximately 5–7% of maximum transpiration rate. Isotopic analyses showed that up to 6% of a leaf's water content could be traced to a previous night's fog deposition, but this amount varied considerably depending on the age and water status of the leaves. Old leaves, which appear most able to absorb fog water were able to absorb distilled water when fully submersed at an average rate of 0.90 mmol m2 s−1, or about 80% of transpiration rates measured at the leaf level in the field. Sequoia sempervirens has poor stomatal control in response to a drying atmosphere, with rates of water loss on very dry nights up to 40% of midday summer values and rates above 10% being extremely common. Owing to this profligate water use behaviour of S. sempervirens, it appears that fog has a greater role in suppressing water loss from leaves, and thereby ameliorating daily water stress, than in providing supplemental water to foliar tissues per se. Although direct foliar absorption from fog inputs represents only a small fraction of the water used each day, fog's in reducing transpiration and rehydrating leaf tissues during the most active growth periods in summer may allow for greater seasonal carbon fixation and thus contribute to the very fast growth rates and great size of this species.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated spatial variation in precipitation by correlation and regression analysis of long-period records and found that there is a strong positive correlation between winter precipitation at stations over the entire region, so that, for practical forecasting of summer runoff in some basins, a single valley-floor precipitation station can be used.
Abstract: . Most of the flow in the River Indus from its upper mountain basin is derived from melting snow and glaciers. Climatic variability and change of both precipitation and energy inputs will, therefore, affect rural livelihoods at both a local and a regional scale through effects on summer runoff in the River Indus. Spatial variation in precipitation has been investigated by correlation and regression analysis of long-period records. There is a strong positive correlation between winter precipitation at stations over the entire region, so that, for practical forecasting of summer runoff in some basins, a single valley-floor precipitation station can be used In contrast, spatial relationships in seasonal precipitation are weaker in summer and sometimes significantly negative between stations north and south of the Himalayan divide. Although analysis of long datasets of precipitation from 1895 shows no significant trend, from 1961–1999 there are statistically significant increases in winter, in summer and in the annual precipitation at several stations. Preliminary analysis has identified a significant positive correlation between the winter North Atlantic Oscillation (NAO) and winter precipitation in the Karakoram and a negative correlation between NAO and summer rainfall at some stations. Keywords: upper Indus basin, climate change, time series analysis, spatial correlation, teleconnections

Journal ArticleDOI
TL;DR: In this paper, the authors examined the tropical precipitation anomalies under global warming in an intermediate atmospheric model coupled with a simple land surface and a mixed layer ocean and found that the importance of variation in gross moist stability, which is likely to differ among climate models, is suggested as a potential factor causing discrepancies in predicted regional tropical precipitation changes.
Abstract: Mechanisms that determine the tropical precipitation anomalies under global warming are examined in an intermediate atmospheric model coupled with a simple land surface and a mixed layer ocean. To compensate for the warm tropospheric temperature, atmospheric boundary layer (ABL) moisture must increase to maintain positive convective available potential energy (CAPE) in convective regions. In nonconvective regions, ABL moisture is controlled by different balances and does not increase as much, creating a spatial gradient of ABL moisture anomalies. Associated with this spatial pattern of the ABL moisture anomalies are two main mechanisms responsible for the anomalous tropical precipitation. In the ‘‘upped-ante mechanism,’’ increases in ABL moisture are opposed by imported dry air wherever inflow from nonconvective regions over margins of convective regions occurs. The ABL moisture is not enough to meet the higher ‘‘convective ante’’ induced by the warmer tropospheric temperature, so precipitation is decreased. In the ‘‘anomalous gross moist stability mechanism,’’ gross moist stability is reduced due to increased ABL moisture. As a result, convection is enhanced and precipitation becomes heavier over convective regions. While the upped-ante mechanism induces negative precipitation anomalies over the margins of convective regions, the anomalous gross moist stability mechanism induces positive precipitation anomalies within convective regions. The importance of variation in gross moist stability, which is likely to differ among climate models, is suggested as a potential factor causing discrepancies in the predicted regional tropical precipitation changes.

Journal ArticleDOI
TL;DR: In this paper, the authors used a one-layer bucket-based water balance model for the global soil moisture data set for the period from 1948 to the present, where all fields are updated monthly, which greatly enhances utility for near-real-time purposes.
Abstract: [1] We have produced a 0.5° × 0.5° monthly global soil moisture data set for the period from 1948 to the present. The land model is a one-layer “bucket” water balance model, while the driving input fields are Climate Prediction Center monthly global precipitation over land, which uses over 17,000 gauges worldwide, and monthly global temperature from global Reanalysis. The output consists of global monthly soil moisture, evaporation, and runoff, starting from January 1948. A distinguishing feature of this data set is that all fields are updated monthly, which greatly enhances utility for near-real-time purposes. Data validation shows that the land model does well; both the simulated annual cycle and interannual variability of soil moisture are reasonably good against the limited observations in different regions. A data analysis reveals that, on average, the land surface water balance components have a stronger annual cycle in the Southern Hemisphere than those in the Northern Hemisphere. From the point of view of soil moisture, climates can be characterized into two types, monsoonal and midlatitude climates, with the monsoonal ones covering most of the low-latitude land areas and showing a more prominent annual variation. A global soil moisture empirical orthogonal function analysis and time series of hemisphere means reveal some interesting patterns (like El Nino-Southern Oscillation) and long-term trends in both regional and global scales.

Journal ArticleDOI
TL;DR: In this paper, the potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM).
Abstract: The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a `business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995–2015) scenario and from the three BAU climate(2040–2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1–3: 2010–2039,2040–2069, 2070–2098) in which changes in annual average temperature were +0.5,+1.3 and +2.1 °C, respectively, while critical winter season precipitation changes were –3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040–2060 period was +1.2 °C and the average winter precipitation change was –3 percent, relative to the RCM controlclimate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative reservoir operating policies designed to mitigate reservoir system performance losses. In general, the combination of earlier reservoir refill with greater storage allocations for instream flow targets mitigated some of the negative impacts to flow, but only with significant losses in firm hydropower production (ranging from –9 percent in Period1 to –35 percent for RCM). Simulated hydropower revenue changes were lessthan 5 percent for all scenarios, however, primarily due to small changes inannual runoff.

Journal ArticleDOI
TL;DR: In this paper, the authors used the Penn State/NCAR Mesoscale Model (MM5) to downscale the PCM control (20 years) and three future (2040-2060) climate simulations to yield ensemble regional climate simulations at 40 km spatial resolution.
Abstract: To study the impacts of climate change on water resources in the western U.S., global climate simulations were produced using the National Center for Atmospheric Research/Department of Energy (NCAR/DOE) Parallel Climate Model (PCM). The Penn State/NCAR Mesoscale Model (MM5) was used to downscale the PCM control (20 years) and three future(2040–2060) climate simulations to yield ensemble regional climate simulations at 40 km spatial resolution for the western U.S. This paper describes the regional simulations and focuses on the hydroclimate conditions in the Columbia River Basin (CRB) and Sacramento-San Joaquin River (SSJ) Basin. Results based on global and regional simulations show that by mid-century, the average regional warming of 1 to 2.5 °C strongly affects snowpack in the western U.S. Along coastal mountains, reduction in annual snowpack was about70% as indicated by the regional simulations. Besides changes in mean temperature, precipitation, and snowpack, cold season extreme daily precipitation increased by 5 to 15 mm/day (15–20%) along theCascades and the Sierra. The warming resulted in increased rainfall at the expense of reduced snowfall, and reduced snow accumulation (or earlier snowmelt) during the cold season. In the CRB, these changes were accompanied by more frequent rain-on-snow events. Overall, they induced higher likelihood of wintertime flooding and reduced runoff and soil moisture in the summer. Changes in surface water and energy budgets in the CRB and SSJ basin were affected mainly by changes in surface temperature, which were statistically significant at the 0.95 confidence level. Changes in precipitation, while spatially incoherent, were not statistically significant except for the drying trend during summer. Because snow and runoff are highly sensitive tospatial distributions of temperature and precipitation, this study shows that (1) downscaling provides more realistic estimates of hydrologic impacts in mountainous regions such as the western U.S., and (2) despite relatively small changes in temperature and precipitation, changes in snowpack and runoff can be much larger on monthly to seasonal time scales because the effects of temperature and precipitation are integrated over time and space through various surface hydrological and land-atmosphere feedback processes. Although the results reported in this study were derived from an ensemble of regional climate simulations driven by a global climate model that displays low climate sensitivity compared with most other models, climate change was found to significantly affect water resources in the western U.S. by the mid twenty-first century.

Journal ArticleDOI
TL;DR: In this article, the authors compared six monthly precipitation datasets (CRU, WC, WM, GPCC, GPCP, TRMM, and NCEP-II) to assess the uncertainties in these datasets and their impact on the terrestrial water balance.
Abstract: Water balance calculations are becoming increasingly important for earth-system studies. Precipitation is one of the most critical input variables for such calculations because it is the immediate source of water for the land surface hydrological budget. Numerous precipitation datasets have been developed in the last two decades, but these datasets often show marked differences in their spatial and temporal distribution of this key hydrological variable. This paper compares six monthly precipitation datasets—Climate Research Unit of University of East Anglia (CRU), Willmott‐Matsuura (WM), Global Precipitation Climate Center (GPCC), Global Precipitation Climatology Project (GPCP), Tropical Rainfall Measuring Mission (TRMM), and NCEP‐Department of Energy (DOE) Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis (NCEP-2)—to assess the uncertainties in these datasets and their impact on the terrestrial water balance. The six datasets tested in the present paper were climatologically averaged and compared by calculating various statistics of the differences. The climatologically averaged monthly precipitation estimates were applied as inputs to a water balance model to estimate runoff and the uncertainties in runoff arising directly from the precipitation estimates. The results of this study highlight the need for accurate precipitation inputs for water balance calculations. These results also demonstrate the need to improve precipitation estimates in arid and semiarid regions, where slight changes in precipitation can result in dramatic changes in the runoff response due to the nonlinearity of the runoff-generation processes.

Journal ArticleDOI
TL;DR: In this article, the surface forcing by soil dust aerosols and its global sensitivity by varying aspects of the dust distribution are poorly constrained by observations are calculated. And they find that dust reduces precipitation during glacial times by as much as half the reduction due to the colder climate alone.
Abstract: [1] For absorbing aerosols like soil (or “mineral”) dust, radiative forcing at the surface differs substantially from the value at the top of the atmosphere (TOA). The climate response depends not only upon the TOA forcing, but its difference with respect to the surface value, which represents radiative heating within the atmosphere. Surface forcing alters evaporation and the hydrologic cycle, which feeds back upon the aerosol burden through the efficiency of wet deposition. We calculate the surface forcing by soil dust aerosols and its global sensitivity by varying aspects of the dust distribution that are poorly constrained by observations. Ignorance of the global dust burden corresponds to a forcing uncertainty of over a factor of two, with smaller uncertainties due to imprecise knowledge of particle optical properties and the particle size distribution. While global evaporation and precipitation are reduced in response to surface radiative forcing by dust, precipitation increases locally over desert regions, so that dust emission can act as a negative feedback to desertification. The effect of the global reduction in precipitation is to lengthen the particle lifetime by reducing the efficiency of wet deposition, representing a positive feedback upon the global dust burden. For the current climate, we calculate the reduction in wet deposition by dust radiative forcing and find that the aerosol burden is increased only modestly. However, the global dust burden and associated radiative forcing are substantially higher during glacial climates, so that the amplification of the dust load by this feedback is larger. By extrapolating from its radiative forcing in the current climate, we estimate that dust reduces precipitation during glacial times by as much as half the reduction due to the colder climate alone.

Journal ArticleDOI
TL;DR: In this article, a new Lagrangian technique is described that builds on methods that have been developed for investigating source-receptor relationships for air pollutants, and it is applied in a case study of an extreme precipitation event that occurred in central Europe in August 2002 and led to floodings with return periods of 100 to 300 yr in some river catchments.
Abstract: Understanding and quantifying the relationships between evaporation of water in one region, precipitation in another, and the transport processes connecting them, is one of the key problems in hydrometeorology. However, to date few methods exist that are suitable for establishing these relationships. In this paper, a new Lagrangian technique is described that builds on methods that have been developed for investigating source‐receptor relationships for air pollutants. It is based on meteorological analysis data and a particle dispersion model and uses a Lagrangian analog to the Eulerian budget method to diagnose the surface moisture flux. Because of its Lagrangian nature, regions of net evaporation are connected by trajectories with regions of net precipitation, and these trajectories can be used to examine how the two are related. The method is shown to yield estimates for the global distribution of the annual mean surface freshwater flux that are equally accurate as those obtained with the Eulerian budget method. It is then applied in a case study of an extreme precipitation event that occurred in central Europe in August 2002 and led to floodings with return periods of 100 to 300 yr in some river catchments. Again it is shown that the moisture fluxes obtained with the Lagrangian and Eulerian method, respectively, agree well with each other, and both agree well with observed precipitation patterns and shortrange precipitation forecasts. Then the new method is used to determine where the water that became precipitation during the flooding event has evaporated. It is found that in addition to a strong Mediterranean source, much of the water evaporated from land. The strong extra evaporation over land was likely due to a wet spell the weeks before that left soils saturated with water in large parts of Europe and flooded in some smaller regions. It appears that precipitation forecasts suffered from predicting too little evaporation in these regions.

Journal ArticleDOI
TL;DR: In this paper, the authors present an analysis of climate change over Europe as simulated by a regional climate model nested within time-slice atmospheric general circulation model (AGCM) experiments for the 30-year period of 2071-2100 with respect to the present day period of 1961-1990 under forcing from the A2 and B2 IPCC emission scenarios.
Abstract: We present an analysis of climate change over Europe as simulated by a regional climate model (RCM) nested within time-slice atmospheric general circulation model (AGCM) experiments. Changes in mean and interannual variability are discussed for the 30-year period of 2071–2100 with respect to the present day period of 1961–1990 under forcing from the A2 and B2 IPCC emission scenarios. In both scenarios, the European region undergoes substantial warming in all seasons, in the range of 1–5.5°C, with the warming being 1–2°C lower in the B2 than in the A2 scenario. The spatial patterns of warming are similar in the two scenarios, with a maximum over eastern Europe in winter and over western and southern Europe in summer. The precipitation changes in the two scenarios also show similar spatial patterns. In winter, precipitation increases over most of Europe (except for the southern Mediterranean regions) due to increased storm activity and higher atmospheric water vapor loadings. In summer, a decrease in precipitation is found over most of western and southern Europe in response to a blocking-like anticyclonic circulation over the northeastern Atlantic which deflects summer storms northward. The precipitation changes in the intermediate seasons (spring and fall) are less pronounced than in winter and summer. Overall, the intensity of daily precipitation events predominantly increases, often also in regions where the mean precipitation decreases. Conversely the number of wet days decreases (leading to longer dry periods) except in the winter over western and central Europe. Cloudiness, snow cover and soil water content show predominant decreases, in many cases also in regions where precipitation increases. Interannual variability of both temperature and precipitation increases substantially in the summer and shows only small changes in the other seasons. A number of statistically significant regional trends are found throughout the scenario simulations, especially for temperature and for the A2 scenario. The results from the forcing AGCM simulations and the nested RCM simulations are generally consistent with each other at the broad scale. However, significant differences in the simulated surface climate changes are found between the two models in the summer, when local physics processes are more important. In addition, substantial fine scale detail in the RCM-produced change signal is found in response to local topographical and coastline features.

Journal ArticleDOI
TL;DR: In this article, a 3-yr (1998-2000) climatology of near-surface rainfall and stratiform rain fraction observed by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) was used to calculate the four-dimensional distribution of tropical latent heating on seasonal-to-annual time scales.
Abstract: A 3-yr (1998‐2000) climatology of near-surface rainfall and stratiform rain fraction observed by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) was used to calculate the four-dimensional distribution of tropical latent heating on seasonal-to-annual time scales. The TRMM-derived latent heating was then used to force an idealized primitive equation model using an initial value approach in order to obtain the quasi-steady-state, nonlinear, zonally asymmetric atmospheric response to precipitating tropical cloud systems. In agreement with previous studies, an increase in stratiform rain fraction elevates circulation centers and strengthens the upper-level response. Furthermore, horizontal variations in the vertical heating profile implied by the PR stratiform rain fraction pattern lead to circulation anomalies of varying height and vertical extent that

Journal ArticleDOI
TL;DR: In this article, the authors quantify the spatial distribution of rainfall in tropical cyclones (TCs) over the global oceans using TRMM microwave imager rain estimates, and examine the relationship between the storm intensity, its geographical location, and the rainfall distribution, the dataset is stratified into three intensity groups and six oceanic basins.
Abstract: TRMM microwave imager rain estimates are used to quantify the spatial distribution of rainfall in tropical cyclones (TCs) over the global oceans. A total of 260 TCs were observed worldwide from 1 January 1998‐31 December 2000, providing 2121 instantaneous TC precipitation observations. To examine the relationship between the storm intensity, its geographical location, and the rainfall distribution, the dataset is stratified into three intensity groups and six oceanic basins. The three intensity classes used in this study are tropical storms (TSs) with winds ,33 m s21, category 1‐2 hurricane-strength systems (CAT12) with winds from 34‐48 m s21, and category 3‐5 systems (CAT35) with winds .49 m s21. The axisymmetric component of the TC rainfall is represented by the radial distribution of the azimuthal mean rainfall rates ( R). The mean rainfall distribution is computed using 10-km annuli from the storm center to a 500-km radius. The azimuthal mean rain rates vary with storm intensity and from basin to basin. The maximum R is about 12 mm h21 for CAT35, but decreases to 7m m h 21 for CAT12, and to 3 mm h21 for TS. The radius from the storm center of the maximum rainfall decreases with increasing storm intensity, from 50 km for TS to 35 km for CAT35 systems. The asymmetric component is determined by the first-order Fourier decomposition in a coordinate system relative to the storm motion. The asymmetry in TC rainfall varies significantly with both storm intensity and geographic locations. For the global average of all TCs, the maximum rainfall is located in the front quadrants. The location of the maximum rainfall shifts from the front-left quadrant for TS to the front-right for CAT35. The amplitude of the asymmetry varies with intensity as well; TS shows a larger asymmetry than CAT12 and CAT35. These global TC rainfall distributions and variability observed in various ocean basins should help to improve TC rainfall forecasting worldwide.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the decadal change in the spring snow depth over the Tibetan Plateau and impact on the East Asian summer monsoon using station observations of snow depth data and the NCEP-NCAR reanalysis for 1962-93.
Abstract: The decadal change in the spring snow depth over the Tibetan Plateau and impact on the East Asian summer monsoon are investigated using station observations of snow depth data and the NCEP–NCAR reanalysis for 1962–93. During spring (March–April), both the domain-averaged snow depth index (SDI) and the first principal component of the empirical orthogonal function (EOF) analysis exhibit a sharp increase in snow depth after the late 1970s, which is accompanied by excessive precipitation and land surface cooling. The correlation between SDI and precipitation shows a coherent remote teleconnection from the Tibetan Plateau–northern India to western Asia. It is found that the increased snow depth over the plateau after the mid-1970s is concurrent with a deeper India–Burma trough, an intensified subtropical westerly jet as well as enhanced ascending motion over the Tibetan Plateau. Additional factors for the excessive snowfall include more moisture supply associated with the intensification of the south...

Journal ArticleDOI
TL;DR: In this paper, the first three-dimensional global model in which time-dependent spectral albedos and emissivities over snow and sea ice are predicted with a radiative transfer solution, rather than prescribed, is applied to study the climate response of fossil fuel plus biofuel black carbon plus organic matter (ff+bf BC+OM) when BC absorption in snow and Sea ice is accounted for.
Abstract: [1] The first three-dimensional global model in which time-dependent spectral albedos and emissivities over snow and sea ice are predicted with a radiative transfer solution, rather than prescribed, is applied to study the climate response of fossil fuel plus biofuel black carbon plus organic matter (ff+bf BC+OM) when BC absorption in snow and sea ice is accounted for. The model treats the cycling of size-resolved BC+OM between emission and removal by dry deposition and precipitation from first principles. Particles produce and enter size-resolved clouds and precipitation by nucleation scavenging and aerosol-hydrometeor coagulation. Removal brings BC to the surface, where internally and externally mixed BC in snow and sea ice affects albedo and emissivity through radiative transfer. Climate response simulations were run with a ff+bf BC+OC emission inventory lower than that used in a previous study. The 10-year, globally averaged ff+bf BC+OM near-surface temperature response due to all feedbacks was about +0.27 K (+0.32 in the last 3 years), close to those from the previous study (5-year average of +0.3 K and fifth-year warming of +0.35 K) and its modeled range (+0.15 to +0.5 K) because warming due to soot absorption in snow and sea ice here (10-year average of +0.06 K with a modeled range of +0.03 to +0.11 K) offset reduced warming due to lower emission. BC was calculated to reduce snow and sea ice albedo by ∼0.4% in the global average and 1% in the Northern Hemisphere. The globally averaged modeled BC concentration in snow and sea ice was ∼5 ng/g; that in rainfall was ∼22 ng/g. About 98% of BC removal from the atmosphere was due to precipitation; the rest was due to dry deposition. The results here support previous findings that controlling ff+bf BC+OM and CO2 emission may slow global warming.

Journal ArticleDOI
TL;DR: In this paper, the sensitivity of evapotranspiration to global warming for arid regions of Rajasthan (India) was studied in terms of change in temperature, solar radiation, wind speed and vapor pressure within a possible range of ±20% from the normal longterm meteorological parameters of 32 years (1971-2002).

27 Dec 2004
TL;DR: The Community Climate System Model 3 (CCSM3) as discussed by the authors is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler.
Abstract: A new version of the Community Climate System Model (CCSM) has been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for atmosphere and land and a 1-degree grid for ocean and sea-ice. The new system incorporates several significant improvements in the scientific formulation. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land-atmosphere fluxes, ocean mixed-layer processes, and sea-ice dynamics. There are significant improvements in the sea-ice thickness, polar radiation budgets, equatorial sea-surface temperatures, ocean currents, cloud radiative effects, and ENSO teleconnections. CCSM3 can produce stable climate simulations of millenial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases inmore » the ocean-atmosphere fluxes in western coastal regions, the spectrum of ENSO variability, the spatial distribution of precipitation in the Pacific and Indian Oceans, and the continental precipitation and surface air temperatures. We conclude with the prospects for extending CCSM to a more comprehensive model of the Earth's climate system.« less

Journal ArticleDOI
TL;DR: In this article, the authors examined the causes of multi-year droughts using ensembles of long-term (1930-2000) simulations carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTs).
Abstract: The U.S. Great Plains experienced a number of multiyear droughts during the last century, most notably the droughts of the 1930s and 1950s. This study examines the causes of such droughts using ensembles of longterm (1930‐2000) simulations carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTs). The results show that the model produces long-term (multiyear) variations in precipitation in the Great Plains region (308‐508N, 958‐1058W) that are similar to those observed. A correlative analysis suggests that the ensemble-mean low-frequency (time scales longer than about 6 yr) rainfall variations in the Great Plains are linked to a pan-Pacific pattern of SST variability that is the leading empirical orthogonal function (EOF) in the low-frequency SST data. The link between the SST and the Great Plains precipitation is confirmed in idealized AGCM simulations, in which the model is forced by the two polarities of the pan-Pacific SST pattern. The idealized simulations further show that it is primarily the tropical part of the SST anomalies that influences the Great Plains. As such, the Great Plains tend to have above-normal precipitation when the tropical Pacific SSTs are above normal, while there is a tendency for drought when the tropical SSTs are cold. The upper-tropospheric response to the pan-Pacific SST EOF shows a global-scale pattern with a strong wave response in the Pacific and a substantial zonally symmetric component in which U.S. Great Plains pluvial (drought) conditions are associated with reduced (enhanced) heights throughout the extratropics. The potential predictability of rainfall in the Great Plains associated with SSTs is rather modest, with about one-third of the total low-frequency rainfall variance being forced by SST anomalies. Further idealized experiments with climatological SST suggest that the remaining low-frequency variance in the Great Plains precipitation is the result of interactions with soil moisture. In particular, simulations with soil moisture feedback show a fivefold increase in the variance in annual Great Plains precipitation compared with simulations in which the soil feedback is excluded. In addition to increasing variance, the interactions with the soil introduce a year-toyear memory in the hydrological cycle. The impact of soil memory is consistent with a red noise process, in which the deep soil is forced by white noise and damped with a time scale of about 1.5 yr. As such, the role of low-frequency SST variability is to introduce a bias to the net forcing on the soil moisture that drives the random process preferentially to either wet or dry conditions.