scispace - formally typeset
Search or ask a question

Showing papers on "Precipitation published in 2018"


Journal ArticleDOI
TL;DR: TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets, as well as annual runoff from streamflow gauges.
Abstract: We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

1,079 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive review of the data sources and estimation methods of 30 currently available global precipitation data sets, including gauge-based, satellite-related, and reanalysis data sets.
Abstract: In this paper, we present a comprehensive review of the data sources and estimation methods of 30 currently available global precipitation data sets, including gauge-based, satellite-related, and reanalysis data sets. We analyzed the discrepancies between the data sets from daily to annual timescales and found large differences in both the magnitude and the variability of precipitation estimates. The magnitude of annual precipitation estimates over global land deviated by as much as 300 mm/yr among the products. Reanalysis data sets had a larger degree of variability than the other types of data sets. The degree of variability in precipitation estimates also varied by region. Large differences in annual and seasonal estimates were found in tropical oceans, complex mountain areas, northern Africa, and some high-latitude regions. Overall, the variability associated with extreme precipitation estimates was slightly greater at lower latitudes than at higher latitudes. The reliability of precipitation data sets is mainly limited by the number and spatial coverage of surface stations, the satellite algorithms, and the data assimilation models. The inconsistencies described limit the capability of the products for climate monitoring, attribution, and model validation.

1,006 citations


Journal ArticleDOI
06 Jun 2018-Nature
TL;DR: The translation speed of tropical cyclones has decreased globally by 10% over the past 70 years, which is very likely to have compounded, and possibly dominated, any increases in local rainfall totals that may have occurred as a result of increased tropical-cyclone rain rates.
Abstract: As the Earth’s atmosphere warms, the atmospheric circulation changes. These changes vary by region and time of year, but there is evidence that anthropogenic warming causes a general weakening of summertime tropical circulation1–8. Because tropical cyclones are carried along within their ambient environmental wind, there is a plausible a priori expectation that the translation speed of tropical cyclones has slowed with warming. In addition to circulation changes, anthropogenic warming causes increases in atmospheric water-vapour capacity, which are generally expected to increase precipitation rates 9 . Rain rates near the centres of tropical cyclones are also expected to increase with increasing global temperatures10–12. The amount of tropical-cyclone-related rainfall that any given local area will experience is proportional to the rain rates and inversely proportional to the translation speeds of tropical cyclones. Here I show that tropical-cyclone translation speed has decreased globally by 10 per cent over the period 1949–2016, which is very likely to have compounded, and possibly dominated, any increases in local rainfall totals that may have occurred as a result of increased tropical-cyclone rain rates. The magnitude of the slowdown varies substantially by region and by latitude, but is generally consistent with expected changes in atmospheric circulation forced by anthropogenic emissions. Of particular importance is the slowdown of 30 per cent and 20 per cent over land areas affected by western North Pacific and North Atlantic tropical cyclones, respectively, and the slowdown of 19 per cent over land areas in the Australian region. The unprecedented rainfall totals associated with the ‘stall’ of Hurricane Harvey13–15 over Texas in 2017 provide a notable example of the relationship between regional rainfall amounts and tropical-cyclone translation speed. Any systematic past or future change in the translation speed of tropical cyclones, particularly over land, is therefore highly relevant when considering potential changes in local rainfall totals.

391 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared the performance of CHIRP and CHIRPS with two similar operation satellite rainfall products: the African Rainfall Climatology version 2 (ARC2) and the Tropical Applications of Meteorology using Satellite data (TAMSAT).
Abstract: Long and temporally consistent rainfall time series are essential in climate analyses and applications. Rainfall data from station observations are inadequate over many parts of the world due to sparse or non-existent observation networks, or limited reporting of gauge observations. As a result, satellite rainfall estimates have been used as an alternative or as a supplement to station observations. However, many satellite-based rainfall products with long time series suffer from coarse spatial and temporal resolutions and inhomogeneities caused by variations in satellite inputs. There are some satellite rainfall products with reasonably consistent time series, but they are often limited to specific geographic areas. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and quasi-global coverage. In this study, CHIRP and CHIRPS were evaluated over East Africa at daily, dekadal (10-day) and monthly time scales. The evaluation was done by comparing the satellite products with rain gauge data from about 1200 stations. The CHIRP and CHIRPS products were also compared with two similar operation satellite rainfall products: the African Rainfall Climatology version 2 (ARC2) and the Tropical Applications of Meteorology using Satellite data (TAMSAT). The results show that both CHIRP and CHIRPS products are significantly better than ARC2 with higher skill and low or no bias. These products were also found to be slightly better than the latest version of the TAMSAT product at dekadal and monthly time scales, while TAMSAT performed better at daily time scale. The performance of the different satellite products exhibits high spatial variability with weak performances over coastal and mountainous regions.

367 citations


Journal ArticleDOI
TL;DR: In this article, traceable evidence for 467 pathways by which human health, water, food, economy, infrastructure and security have been recently impacted by climate hazards such as warming, heatwaves, precipitation, drought, floods, fires, storms, sea-level rise and changes in natural land cover and ocean chemistry.
Abstract: The ongoing emission of greenhouse gases (GHGs) is triggering changes in many climate hazards that can impact humanity. We found traceable evidence for 467 pathways by which human health, water, food, economy, infrastructure and security have been recently impacted by climate hazards such as warming, heatwaves, precipitation, drought, floods, fires, storms, sea-level rise and changes in natural land cover and ocean chemistry. By 2100, the world’s population will be exposed concurrently to the equivalent of the largest magnitude in one of these hazards if emmisions are aggressively reduced, or three if they are not, with some tropical coastal areas facing up to six simultaneous hazards. These findings highlight the fact that GHG emissions pose a broad threat to humanity by intensifying multiple hazards to which humanity is vulnerable.

311 citations


Journal ArticleDOI
TL;DR: In this article, the recent and future climate evolution in the Mediterranean region is analyzed in relation to annual mean global surface temperature change, and it is shown that Mediterranean regional and global temperatures have warmed at a similar rate until the 1980s and decadal variability determines a large uncertainty that prevents to identify long-term links between precipitation in Mediterranean region and global temperature.
Abstract: The recent (twentieth century) and future (twenty-first century) climate evolution in the Mediterranean region is analyzed in relation to annual mean global surface temperature change. The CMIP5 (Coupled Model Intercomparison Project, Phase 5) simulations, the CRU (Climate Research Unit) observational gridded dataset, and two twentieth century reanalyzes (ECMWF, European Center for Medium range Weather Forecasts) and NOAA ESRL (National Oceanic and Atmospheric Administration-Earth System Research Laboratory) are used. These datasets to large extent agree that in the twentieth century: (a) Mediterranean regional and global temperatures have warmed at a similar rate until the 1980s and (b) decadal variability determines a large uncertainty that prevents to identify long-term links between precipitation in the Mediterranean region and global temperature. However, in the twenty-first century, as mean global temperature increases, in the Mediterranean region, precipitation will decrease at a rate around − 20 mm/K or − 4%/K and temperature will warm 20% more than the global average. Warming will be particularly large in summer (approximately 50% larger than global warming) and for the land areas located north of the basin (locally up to 100% larger than global warming). Reduction of precipitation will affect all seasons in the central and southern Mediterranean areas, with maximum reduction for winter precipitation (− 7 mm/K or − 7%/K for the southern Mediterranean region). For areas along the northern border of the Mediterranean region, reduction will be largest in summer (− 7 mm/K or − 9%/K for the whole northern Mediterranean region), while they will not experience a significant reduction of precipitation in winter.

300 citations


Journal ArticleDOI
29 Aug 2018-Nature
TL;DR: It is shown that theCO2 growth rate is strongly sensitive to observed changes in terrestrial water storage, drier years being associated with faster atmospheric CO2 growth, and this relationship is underestimated in current carbon cycle models.
Abstract: Land ecosystems absorb on average 30 per cent of anthropogenic carbon dioxide (CO2) emissions, thereby slowing the increase of CO2 concentration in the atmosphere1. Year-to-year variations in the atmospheric CO2 growth rate are mostly due to fluctuating carbon uptake by land ecosystems1. The sensitivity of these fluctuations to changes in tropical temperature has been well documented2–6, but identifying the role of global water availability has proved to be elusive. So far, the only usable proxies for water availability have been time-lagged precipitation anomalies and drought indices3–5, owing to a lack of direct observations. Here, we use recent observations of terrestrial water storage changes derived from satellite gravimetry7 to investigate terrestrial water effects on carbon cycle variability at global to regional scales. We show that the CO2 growth rate is strongly sensitive to observed changes in terrestrial water storage, drier years being associated with faster atmospheric CO2 growth. We demonstrate that this global relationship is independent of known temperature effects and is underestimated in current carbon cycle models. Our results indicate that interannual fluctuations in terrestrial water storage strongly affect the terrestrial carbon sink and highlight the importance of the interactions between the water and carbon cycles. The growth rate of global atmospheric CO2 concentration is faster in drier years, independently of temperature; this relationship is underestimated in current carbon cycle models.

275 citations


Journal ArticleDOI
10 May 2018
TL;DR: In this article, the effects of greenhouse gas (GHG)-induced global warming may lead to increased surface aridity and more droughts in the twenty-first century due to decreased precipitation in the subtropics and increased evaporative demand associated with higher vapor pressure deficit under warmer temperatures.
Abstract: Many studies have shown that greenhouse gas (GHG)-induced global warming may lead to increased surface aridity and more droughts in the twenty-first century due to decreased precipitation in the subtropics and increased evaporative demand associated with higher vapor pressure deficit under warmer temperatures. Some recent studies argue that increased water use efficiency by plants under elevated CO2 may reduce the evaporative demand and therefore mitigate the drying. Here we first discuss the model-projected changes in precipitation amount and frequency that affect the surface water balance and aridity and then the changes in actual and potential evapotranspiration under GHG-induced warming. The effects of the GHG-induced warming and changes in plants’ physiology under elevated CO2 on precipitation, soil moisture, and runoff are quantified and compared by analyzing different model experiments with and without the physiologic response. The surface drying effect of GHG-induced warming is found to dominate over the wetting effect of plants’ physiology in response to increasing CO2, leading to similar surface drying patterns in climate model simulations with or without the physiologic response in the twenty-first century. Part of the drying comes from increased dry spells (i.e., more dry days) and a flattening of the histograms of drought indices as GHGs increase, with the latter leading to widespread increases in hydrological drought even over areas with increasing mean runoff. Because of this, the change pattern of the mean cannot be used to represent drought changes. Consistent with the projected drying in the twenty-first century, recent analyses of model experiments suggest wetter land surfaces during the last glacial maximum, which implies that dusty air during cold glacial periods may have resulted from other factors, such as stronger winds and more dust sources, rather than drier land surfaces. Finally, the drying in the subtropics does not appear to be just a transient response to increased GHGs, as the warming and precipitation change patterns do not vary significantly over time in 500-year simulations with increased CO2 contents by a fully coupled climate model.

253 citations



Journal ArticleDOI
TL;DR: This paper investigated 30-year vegetation impacts on regional hydrology by allowing for vegetation-induced changes in precipitation using a coupled land-atmosphere global climate model, with a higher spatial resolution zoomed grid over China.
Abstract: China has experienced substantial changes in vegetation cover, with a 10% increase in the leaf area index and an ~41.5 million-hectare increase in forest area since the 1980s. Earlier studies have suggested that increases in leaf area and tree cover have led to a decline in soil moisture and runoff due to increased evapotranspiration (ET), especially in dry regions of China. However, those studies often ignored precipitation responses to vegetation increases, which could offset some of the negative impact on soil moisture by increased ET. We investigated 30-year vegetation impacts on regional hydrology by allowing for vegetation-induced changes in precipitation using a coupled land-atmosphere global climate model, with a higher spatial resolution zoomed grid over China. We found high spatial heterogeneity in the vegetation impacts on key hydrological variables across China. In North and Southeast China, the increased precipitation from vegetation greening and the increased forest area, although statistically insignificant, supplied enough water to cancel out enhanced ET, resulting in weak impact on soil moisture. In Southwest China, however, the increase in vegetation cover significantly reduced soil moisture while precipitation was suppressed by the weakened summer monsoon. In Northeast China, the only area where forest cover declined, soil moisture was significantly reduced, by -8.1 mm decade-1, likely because of an intensified anticyclonic circulation anomaly during summer. These results suggest that offline model simulations can overestimate the increase of soil dryness in response to afforestation in North China, if vegetation feedbacks lead to increased precipitation like in our study.

240 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the gridded observations and simulations from the Coupled model intercomparison project 5 (CMIP5) and Climate of 20th century plus (C20C+) detection and attribution (D&A) project to show that the frequency and intensity of extreme precipitation events have increased in India during the last few decades.
Abstract: India has witnessed some of the most devastating extreme precipitation events, which have affected urban transportation, agriculture, and infrastructure. Despite the profound implications and damage due to extreme precipitation events, the influence of anthropogenic warming on the intensity and frequency of extreme precipitation events over India remains poorly constrained. Here using the gridded observations and simulations from the Coupled model intercomparison project 5 (CMIP5) and Climate of 20th century plus (C20C+) detection and attribution (D&A) project, we show that the frequency and intensity of extreme precipitation events have increased in India during the last few decades. Along with the extreme precipitation, dew point temperature has also increased during 1979–2015. The scaling relationship between extreme precipitation and dew point temperature shows a super (more than 7% increase per unit rise in dew point temperature) Clausius-Clapeyron (C-C) relationship for the majority of south India. Moreover, southern and central India show a higher (10%/°C) scaling relationship than north India (3.5%/°C). Our analysis using the Hist (historic) and HistNat (historic natural) simulations from the CMIP5 and C20C+ projects confirms an increase in the frequency of extreme precipitation events under the anthropogenic warming. Moreover, we show that 1–5 day precipitation maxima at 5–500 year return period increases (10–30%) under the anthropogenic warming. The frequency of precipitation extremes is projected to rise more prominently in southern and central India in the mid and end of the 21st century under the representative concentration pathway (RCP) 8.5. Our results show a significant contribution of anthropogenic warming in the rise of the frequency of extreme precipitation, which has implications for infrastructure, agriculture, and water resources in India.

Journal ArticleDOI
TL;DR: In this paper, two advanced high resolution multi-satellite precipitation products namely, Integrated Multi-satellitE Retrievals for GPM (IMERG) and Global Satellite Mapping of Precipitation (GSMaP) version 6 are released.

01 Dec 2018
TL;DR: The results suggest that offline model simulations can overestimate the increase of soil dryness in response to afforestation in North China, if vegetation feedbacks lead to increased precipitation like in this study.
Abstract: China has experienced substantial changes in vegetation cover, with a 10% increase in the leaf area index and an ~41.5 million-hectare increase in forest area since the 1980s. Earlier studies have suggested that increases in leaf area and tree cover have led to a decline in soil moisture and runoff due to increased evapotranspiration (ET), especially in dry regions of China. However, those studies often ignored precipitation responses to vegetation increases, which could offset some of the negative impact on soil moisture by increased ET. We investigated 30-year vegetation impacts on regional hydrology by allowing for vegetation-induced changes in precipitation using a coupled land-atmosphere global climate model, with a higher spatial resolution zoomed grid over China. We found high spatial heterogeneity in the vegetation impacts on key hydrological variables across China. In North and Southeast China, the increased precipitation from vegetation greening and the increased forest area, although statistically insignificant, supplied enough water to cancel out enhanced ET, resulting in weak impact on soil moisture. In Southwest China, however, the increase in vegetation cover significantly reduced soil moisture while precipitation was suppressed by the weakened summer monsoon. In Northeast China, the only area where forest cover declined, soil moisture was significantly reduced, by -8.1 mm decade-1, likely because of an intensified anticyclonic circulation anomaly during summer. These results suggest that offline model simulations can overestimate the increase of soil dryness in response to afforestation in North China, if vegetation feedbacks lead to increased precipitation like in our study.

Journal ArticleDOI
TL;DR: In this paper, a comparison of six high-resolution, daily and monthly gridded precipitation datasets over the Western United States was conducted, and the authors found that the greatest absolute differences among datasets occur in high-elevation areas and in the maritime mountain ranges of the Western USA, while the greatest percent differences relative to annual total precipitation occur in arid and rain shadowed areas.

Journal ArticleDOI
TL;DR: The authors performed an initial comparison of three GPM IMERG products (IMERG_E, IMERG_L and IMERG-F) with its predecessor, the TMPA 3B42 and 3b42RT products, and a long-term PERSIANN-CDRD product over Malaysia.

01 Apr 2018
TL;DR: The Multi-Source Weighted Ensemble Precipitation (MSWEP) dataset as mentioned in this paper is a gridded precipitation P dataset spanning 1979-2017, which is unique in several aspects: i) full global co...
Abstract: We present Multi-Source Weighted-Ensemble Precipitation, version 2 (MSWEP V2), a gridded precipitation P dataset spanning 1979–2017. MSWEP V2 is unique in several aspects: i) full global co...

Journal ArticleDOI
08 Jun 2018-Science
TL;DR: There are many ways to define extreme precipitation, and the choice of definition affects how it responds to warming and users should consider how extreme precipitation is defined when interpreting analyses of its change with warming.
Abstract: A warmer atmosphere has more water vapor. Scientists have been trying to predict what this means for precipitation, but this is more complex and harder to model than temperature. One explanation has been that the intensity of extreme precipitation events will increase at a rate proportional to the increase in atmospheric moisture. But recent findings show that this explanation is too simplistic. There are many ways to define extreme precipitation, and the choice of definition affects how it responds to warming. Researchers must choose their definition of extreme precipitation with care and articulate it clearly, and users should consider how extreme precipitation is defined when interpreting analyses of its change with warming.

Journal ArticleDOI
TL;DR: In this article, the authors report simulations with a numerical model of lake surface fluxes, with input data based on a high-emissions climate change scenario (Representative Concentration Pathway 8.5).
Abstract: Lake evaporation is a sensitive indicator of the hydrological response to climate change. Variability in annual lake evaporation has been assumed to be controlled primarily by the incoming surface solar radiation. Here we report simulations with a numerical model of lake surface fluxes, with input data based on a high-emissions climate change scenario (Representative Concentration Pathway 8.5). In our simulations, the global annual lake evaporation increases by 16% by the end of the century, despite little change in incoming solar radiation at the surface. We attribute about half of this projected increase to two effects: periods of ice cover are shorter in a warmer climate and the ratio of sensible to latent heat flux decreases, thus channelling more energy into evaporation. At low latitudes, annual lake evaporation is further enhanced because the lake surface warms more slowly than the air, leading to more long-wave radiation energy available for evaporation. We suggest that an analogous change in the ratio of sensible to latent heat fluxes in the open ocean can help to explain some of the spread among climate models in terms of their sensitivity of precipitation to warming. We conclude that an accurate prediction of the energy balance at the Earth’s surface is crucial for evaluating the hydrological response to climate change.

Journal ArticleDOI
TL;DR: In this paper, the authors derived near-surface soil moisture content in Europe for the 21st century from simulations performed with 26 CMIP5 global climate models (GCMs). Two Representative Concentration Pathways, RCP4.5 and RCP8.5, were considered.
Abstract: Projections for near-surface soil moisture content in Europe for the 21st century were derived from simulations performed with 26 CMIP5 global climate models (GCMs). Two Representative Concentration Pathways, RCP4.5 and RCP8.5, were considered. Unlike in previous research in general, projections were calculated separately for all four calendar seasons. To make the moisture contents simulated by the various GCMs commensurate, the moisture data were normalized by the corresponding local maxima found in the output of each individual GCM. A majority of the GCMs proved to perform satisfactorily in simulating the geographical distribution of recent soil moisture in the warm season, the spatial correlation with an satellite-derived estimate varying between 0.4 and 0.8. In southern Europe, long-term mean soil moisture is projected to decline substantially in all seasons. In summer and autumn, pronounced soil drying also afflicts western and central Europe. In northern Europe, drying mainly occurs in spring, in correspondence with an earlier melt of snow and soil frost. The spatial pattern of drying is qualitatively similar for both RCP scenarios, but weaker in magnitude under RCP4.5. In general, those GCMs that simulate the largest decreases in precipitation and increases in temperature and solar radiation tend to produce the most severe soil drying. Concurrently with the reduction of time-mean soil moisture, episodes with an anomalously low soil moisture, occurring once in 10 years in the recent past simulations, become far more common. In southern Europe by the late 21st century under RCP8.5, such events would be experienced about every second year.

Journal ArticleDOI
TL;DR: In this paper, the authors combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations.
Abstract: Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions.

Journal ArticleDOI
TL;DR: In this article, the authors examined how characteristics of tropical cyclones (TCs) that are explicitly resolved in a global atmospheric model with horizontal resolution of approximately 28 km are projected to change in a warmer climate using bias-corrected sea-surface temperatures (SSTs).
Abstract: This study examines how characteristics of tropical cyclones (TCs) that are explicitly resolved in a global atmospheric model with horizontal resolution of approximately 28 km are projected to change in a warmer climate using bias-corrected sea-surface temperatures (SSTs). The impact of mitigating from RCP8.5 to RCP4.5 is explicitly considered and is compared with uncertainties arising from SST projections. We find a reduction in overall global TC activity as climate warms. This reduction is somewhat less pronounced under RCP4.5 than under RCP8.5. By contrast, the frequency of very intense TCs is projected to increase dramatically in a warmer climate, with most of the increase concentrated in the NW Pacific basin. Extremes of storm related precipitation are also projected to become more common. Reduction in the frequency of extreme precipitation events is possible through mitigation from RCP8.5 to RCP4.5. In general more detailed basin-scale projections of future TC activity are subject to large uncertainties due to uncertainties in future SSTs. In most cases these uncertainties are larger than the effects of mitigating from RCP8.5 to RCP4.5.

Journal ArticleDOI
TL;DR: In this paper, changes in the seasonality of precipitation over Africa have high potential for detrimental socioeconomic impacts due to high societal dependence upon seasonal rainfall, and they have been shown to have negative socioeconomic impacts.
Abstract: Changes in the seasonality of precipitation over Africa have high potential for detrimental socioeconomic impacts due to high societal dependence upon seasonal rainfall. Here, for the first...

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed recent research progress in precipitation changes in recent decades and explored their mechanisms involved based on observations (meteorological station data and satellite remote sensing data) and simulations [global climate models (GCMs) and downscaling modelling].
Abstract: The Tibetan Plateau (TP) has a significant influence on local, regional, and even global weather and climate systems. Precipitation on the TP plays a critical role in the energy and water cycle and terrestrial ecosystem. This study reviewed recent research progress in precipitation changes in recent decades and explored their mechanisms involved based on observations (meteorological station data and satellite remote sensing data) and simulations [global climate models (GCMs) and downscaling modelling]. Our review suggested that the TP precipitation decreases progressively from southeast to northwest, mainly occurs in summer (June–August), accounting for ∼60–70% of annual total, and marginally occurs in winter (December–February), accounting for less than 10%. Diurnal variation of precipitation and convective activity are obvious on the TP. The TP has experienced an overall surface air wetting trend since the 1960s, but with apparent regional and seasonal differences. Projected precipitation on the TP from GCMs and statistical downscaling methods (SDMs) generally increases, while from dynamic downscaling methods (DDMs) slightly increases or even decreases as greenhouse gas emissions continue in the future. Influencing factors such as the TP' and Asian land heating, large-scale atmospheric circulations, climate warming, aerosols, and land surface conditions all exert prominent but complicated effects on precipitation changes on the TP. More efforts should be made to improve the reliabilities and accuracies of precipitation observational data sets, GCMs, and downscaling modelling. Finally, directions for future research are discussed based on the various means covering high-quality precipitation observations and more skilful simulations, which are synthetically used to investigate the TP precipitation and its driving mechanisms. It is expected that this review and its results will be beneficial for hydrological and precipitation studies over the TP.

Journal ArticleDOI
TL;DR: In this paper, the authors assess the changing characteristics of droughts due to climate variability and change during two major cropping seasons (Rabi and Kharif) for the period 1901-2010 over the diverse climate of Pakistan.


Journal ArticleDOI
TL;DR: Limiting global warming to 1.5 °C instead of 2 C could reduce areal and population exposures to baseline once-in-20-year rainfall extremes by 25% (18–41%) and 36% (22–46%), respectively, which is more remarkable for more intense extremes.
Abstract: The Paris Agreement set a goal to keep global warming well below 2 °C and pursue efforts to limit it to 1.5 °C. Understanding how 0.5 °C less warming reduces impacts and risks is key for climate policies. Here, we show that both areal and population exposures to dangerous extreme precipitation events (e.g., once in 10- and 20-year events) would increase consistently with warming in the populous global land monsoon regions based on Coupled Model Intercomparison Project Phase 5 multimodel projections. The 0.5 °C less warming would reduce areal and population exposures to once-in-20-year extreme precipitation events by 25% (18–41%) and 36% (22–46%), respectively. The avoided impacts are more remarkable for more intense extremes. Among the monsoon subregions, South Africa is the most impacted, followed by South Asia and East Asia. Our results improve the understanding of future vulnerability to, and risk of, climate extremes, which is paramount for mitigation and adaptation activities for the global monsoon region where nearly two-thirds of the world’s population lives. The populous global land monsoon region has been suffering from extreme precipitation. Here, the authors show that limiting global warming to 1.5 °C instead of 2 °C could reduce areal and population exposures to baseline once-in-20-year rainfall extremes by 25% (18–41%) and 36% (22–46%), respectively.

Journal ArticleDOI
TL;DR: Based on meteorological station records during 1960-2016, Wang et al. as discussed by the authors detected the variations of air temperature and precipitation by using non-parametric method in the different sub-regions and different elevations of the Tianshan Mountains.

Journal ArticleDOI
TL;DR: In this paper, a simulation of the present day climate with the use of the climate model INM-CM48 in comparison with the result of the previous model INMCM4.0 in most indicators.
Abstract: Abstract We consider simulation of the present day climate with the use of the climate model INM-CM48 in comparison with the result of the previous model INMCM4.0 which used different parameterizations of many physical processes and also in comparison with the model INM-CM5 which uses the same parameterizations, but with better spatial resolution. It is shown that the model INM-CM48 reproduces the modern climate better than the model INMCM4.0 in most indicators.

Journal ArticleDOI
TL;DR: In this article, the authors used a coupled land-climate model to quantify the potential impact of the satellite-observed Earth greening over the past 30 years on the terrestrial water cycle.
Abstract: Leaf area index (LAI) is increasing throughout the globe, implying the Earth greening. Global modelling studies support this contention, yet satellite observations and model simulations have never been directly compared. Here, for the first time, we used a coupled land-climate model to quantify the potential impact of the satellite-observed Earth greening over the past 30 years on the terrestrial water cycle. The global LAI enhancement by 8% between the early 1980s and the early 2010s is modelled to have caused increases of 12.0 ±2.4 mm yr-1 in evapotranspiration and 12.1 ±2.7 mm yr-1 in precipitation — about 55 ±25% and 28 ±6% of the observed increases in land evapotranspiration and precipitation, respectively. In wet regions, the greening did not significantly decrease runoff and soil moisture because it intensified moisture recycling through a coincident increase of evapotranspiration and precipitation. But in dry regions including Sahel, West Asia, northern India, western United States and the...

Journal ArticleDOI
TL;DR: In this article, the authors use numerical experiments based on established isotope fractionation theory to show that these trend lines are often by-products of the seasonality in evaporative fractionation and in the isotopic composition of precipitation, and, if interpreted as such, can yield highly biased estimates of the isotope composition of the source water.
Abstract: Stable water isotopes are widely used in ecohydrology to trace the transport, storage, and mixing of water on its journey through landscapes and ecosystems Evaporation leaves a characteristic signature on the isotopic composition of the water that is left behind, such that in dual-isotope space, evaporated waters plot below the local meteoric water line (LMWL) that characterizes precipitation Soil and xylem water samples can often plot below the LMWL as well, suggesting that they have also been influenced by evaporation These soil and xylem water samples frequently plot along linear trends in dual-isotope space These trend lines are often termed “evaporation lines” and their intersection with the LMWL is often interpreted as the isotopic composition of the precipitation source water Here we use numerical experiments based on established isotope fractionation theory to show that these trend lines are often by-products of the seasonality in evaporative fractionation and in the isotopic composition of precipitation Thus, they are often not true evaporation lines, and, if interpreted as such, can yield highly biased estimates of the isotopic composition of the source water