scispace - formally typeset
Search or ask a question
Topic

Precipitation

About: Precipitation is a research topic. Over the lifetime, 32861 publications have been published within this topic receiving 990496 citations. The topic is also known as: rain & rainfall.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, changes in snow amount, as measured by the water equivalent of the snow pack (SWE), are studied using simulations of 21st century climate by 20 global climate models.
Abstract: Changes in snow amount, as measured by the water equivalent of the snow pack (SWE), are studied using simulations of 21st century climate by 20 global climate models. Although the simulated warming makes snow season to shorten from its both ends in all of Eurasia and North America, SWE at the height of the winter generally increases in the coldest areas. Elsewhere, snow decreases throughout the winter. The average borderline between increasing and decreasing midwinter SWE coincides broadly with the −20°C isotherm in late 20th century November–March mean temperature, although with some variability between different areas. On the colder side of this isotherm, an increase in total precipitation generally dominates over reduced fraction of solid precipitation and more efficient melting, and SWE therefore increases. On the warmer side, where the phase of winter precipitation and snowmelt are more sensitive to the simulated warming, the reverse happens. The strong temperature dependence of the simulated SWE changes suggests that projections of SWE change could be potentially improved by taking into account biases in simulated present-day winter temperatures. A probabilistic cross verification exercise supports this suggestion.

264 citations

Journal ArticleDOI
TL;DR: In this paper, two sets of methods have been suggested and tested based on Belgian data, which involve computation of quantile perturbations on extreme precipitation intensities, and the tested assumption that the same perturbation holds for daily and sub-daily time scales.

264 citations

Book
06 Aug 2013
TL;DR: The behavior and various controls of diurnal variability in tropical-subtropical rainfall are investigated using tropical rainfall measuring mission (TRMM) precipitation measurements retrieved from: (1) TRMM Microwave Imager (TMI), (2) Precipitation Radar (PR), and (3) TMI/PR Combined, standard level 2 algorithms for the 1998 annual cycle as discussed by the authors.
Abstract: The behavior and various controls of diurnal variability in tropical-subtropical rainfall are investigated using Tropical Rainfall Measuring Mission (TRMM) precipitation measurements retrieved from: (1) TRMM Microwave Imager (TMI), (2) Precipitation Radar (PR), and (3) TMI/PR Combined, standard level 2 algorithms for the 1998 annual cycle. Results show that the diurnal variability characteristics of precipitation are consistent for all three algorithms, providing assurance that TRMM retrievals are providing consistent estimates of rainfall variability. As anticipated, most ocean areas exhibit more rainfall at night, while over most land areas rainfall peaks during daytime ,however, various important exceptions are found. The dominant feature of the oceanic diurnal cycle is a rainfall maximum in late-evening/early-morning (LE-EM) hours, while over land the dominant maximum occurs in the mid- to late-afternoon (MLA). In conjunction with these maxima are pronounced seasonal variations of the diurnal amplitudes. Amplitude analysis shows that the diurnal pattern and its seasonal evolution are closely related to the rainfall accumulation pattern and its seasonal evolution. In addition, the horizontal distribution of diurnal variability indicates that for oceanic rainfall there is a secondary MLA maximum, co-existing with the LE-EM maximum, at latitudes dominated by large scale convergence and deep convection. Analogously, there is a preponderance for an LE-EM maximum over land, co-existing with the stronger MLA maximum, although it is not evident that this secondary continental feature is closely associated with the large scale circulation. The ocean results clearly indicate that rainfall diurnal variability associated with large scale convection is an integral part of the atmospheric general circulation.

263 citations

Journal ArticleDOI
01 Jan 1995-Nature
TL;DR: This article used a lake-sediment record from the montane Mediterranean zone of Morocco to address the question of whether these events were also felt in temperate continental regions, finding evidence of arid intervals of similar duration, periodicity and possibly timing to those in the tropics.
Abstract: CLIMATE records from lake sediments in tropical Africa, Central America and west Asia show several century-scale arid intervals during the Holocene1–10. These may have been caused by temporary weakening of the monsoonal circulation associated with reduced northward heat transport by the oceans7 or by feedback processes stimulated by changes in tropical land-surface conditions10. Here we use a lake-sediment record from the montane Mediterranean zone of Morocco to address the question of whether these events were also felt in temperate continental regions. We find evidence of arid intervals of similar duration, periodicity and possibly timing to those in the tropics. But our pollen data show that the forest vegetation was not substantially affected by these events, indicating that precipitation remained adequate during the summer growing season. Thus, the depletion of the groundwater aquifer that imprinted the dry events in the lake record must have resulted from reduced winter precipitation. We suggest that the occurrence of arid events during the summer in the tropics but during the winter at temperate latitudes can be rationalized if they are both associated with cooler sea surface temperatures in the North Atlantic.

263 citations

01 Dec 2008
TL;DR: It is shown that the inclusion of forcing from human land degradation during the period, in addition to the anomalously SSTs, is necessary to reproduce the anomalous features of the Dust Bowl drought and is improved when the new dust aerosol and vegetation boundary conditions are included.
Abstract: The "Dust Bowl" drought of the 1930s was highly unusual for North America, deviating from the typical pattern forced by "La Nina" with the maximum drying in the central and northern Plains, warm temperature anomalies across almost the entire continent, and widespread dust storms. General circulation models (GCMs), forced by sea surface temperatures (SSTs) from the 1930s, produce a drought, but one that is centered in southwestern North America and without the warming centered in the middle of the continent. Here, we show that the inclusion of forcing from human land degradation during the period, in addition to the anomalous SSTs, is necessary to reproduce the anomalous features of the Dust Bowl drought. The degradation over the Great Plains is represented in the GCM as a reduction in vegetation cover and the addition of a soil dust aerosol source, both consequences of crop failure. As a result of land surface feedbacks, the simulation of the drought is much improved when the new dust aerosol and vegetation boundary conditions are included. Vegetation reductions explain the high temperature anomaly over the northern U.S., and the dust aerosols intensify the drought and move it northward of the purely ocean-forced drought pattern. When both factors are included in the model simulations, the precipitation and temperature anomalies are of similar magnitude and in a similar location compared with the observations. Human-induced land degradation is likely to have not only contributed to the dust storms of the 1930s but also amplified the drought, and these together turned a modest SST-forced drought into one of the worst environmental disasters the U.S. has experienced.

263 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
89% related
Climate change
99.2K papers, 3.5M citations
87% related
Global warming
36.6K papers, 1.6M citations
85% related
Vegetation
49.2K papers, 1.4M citations
85% related
Water content
49.8K papers, 1.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237,839
202214,365
20212,302
20201,964
20191,942
20181,773