scispace - formally typeset
Search or ask a question
Topic

Precipitation

About: Precipitation is a research topic. Over the lifetime, 32861 publications have been published within this topic receiving 990496 citations. The topic is also known as: rain & rainfall.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the response of a global model of the climate to quadrupling of the CO2 concentration in the atmosphere and found that the warming of the model atmosphere resulted in an enrichment of the moisture content in the air and an increase in the poleward moisture transport.
Abstract: This study investigates the response of a global model of the climate to the quadrupling of the CO2 concentration in the atmosphere. The model consists of (1) a general circulation model of the atmosphere, (2) a heat and water balance model of the continents, and (3) a simple mixed layer model of the oceans. It has a global computational domain and realistic geography. For the computation of radiative transfer, the seasonal variation of insolation is imposed at the top of the model atmosphere, and the fixed distribution of cloud cover is prescribed as a function of latitude and of height. It is found that with some exceptions, the model succeeds in reproducing the large-scale characteristics of seasonal and geographical variation of the observed atmospheric temperature. The climatic effect of a CO2 increase is determined by comparing statistical equilibrium states of the model atmosphere with a normal concentration and with a 4 times the normal concentration of CO2 in the air. It is found that the warming of the model atmosphere resulting from the CO2 increase has significant seasonal and latitudinal variation. Because of the absence of an albedo feedback mechanism, the warming over the Antarctic continent is somewhat less than the warming in high latitudes of the northern hemisphere. Over the Arctic Ocean and its surroundings, the warming is much larger in winter than summer, thereby reducing the amplitude of seasonal temperature variation. It is concluded that this seasonal asymmetry in the warming results from the reduction in the coverage and thickness of the sea ice. The warming of the model atmosphere results in an enrichment of the moisture content in the air and an increase in the poleward moisture transport. The additional moisture is picked up from the tropical ocean and is brought to high latitudes where both precipitation and runoff increase throughout the year. Further, the time of rapid snowmelt and maximum runoff becomes earlier.

1,003 citations

Journal ArticleDOI
TL;DR: The potential effects of climate change on the hydrology and water resources of the Colorado River basin are assessed by comparing simulated hydrologic and water resource scenarios derived from downscaled climate simulations of the U.S. Department of Energy/National Center for Atmospheric Research Parallel Climate Model (PCM) to scenarios driven by observed historical (1950-1999) climate as discussed by the authors.
Abstract: The potential effects of climate change on the hydrology and water resources of the Colorado River basin are assessed by comparing simulated hydrologic and water resources scenarios derived from downscaled climate simulations of the U.S. Department of Energy/National Center for Atmospheric Research Parallel Climate Model (PCM) to scenarios driven by observed historical (1950–1999) climate. PCM climate scenarios include an ensemble of three 105-year future climate simulations based on projected `business-as-usual'(BAU) greenhouse gas emissions and a control climate simulation based on static 1995 greenhouse gas concentrations. Downscaled transient temperature and precipitation sequences were extracted from PCM simulations, and were used to drive the Variable Infiltration Capacity (VIC) macroscale hydrology model to produce corresponding streamflow sequences. Results for the BAU scenarios were summarized into Periods 1, 2, and 3 (2010–2039,2040–2069, 2070–2098). Average annual temperature changes for the Colorado Riverbasin were 0.5 °C warmer for control climate, and 1.0, 1.7, and 2.4 °C warmer for Periods 1–3, respectively, relative to the historicalclimate. Basin-average annual precipitation for the control climate was slightly(1%) less than for observed historical climate, and 3, 6, and 3%less for future Periods 1–3, respectively. Annual runoff in the controlrun was about 10% lower than for simulated historical conditions, and 14, 18, and 17% less for Periods 1–3, respectively. Analysis of watermanagement operations using a water management model driven by simulated streamflows showed that streamflows associated with control and future BAU climates would significantly degrade the performance of the water resourcessystem relative to historical conditions, with average total basin storage reduced by 7% for the control climate and 36, 32 and 40% for Periods 1–3, respectively. Releases from Glen Canyon Dam to the LowerBasin (mandated by the Colorado River Compact) were met in 80% of years for the control climate simulation (versus 92% in the historical climate simulation), and only in 59–75% of years for the future climate runs. Annual hydropower output was also significantly reduced for the control and future climate simulations. The high sensitivity of reservoir system performance for future climate is a reflection of the fragile equilibrium that now exists in operation of the system, with system demands only slightly less than long-term mean annual inflow.

984 citations

31 Dec 1996
TL;DR: In this paper, the spatial and temporal patterns of global carbon emissions form terrestrial soils were predicted using semi-chanistic, empirically based statistical models, and it was found that, at the global scale, the rates of soil CO{sub 2} efflux correlate significantly with temperature and precipitation, have a pronounced seasonal pattern in most locations, and contribute to observed wintertime increases in atmospheric CO[sub 2}.
Abstract: Semimechanistic, empirically based statistical models were used to predict the spatial (0.5-degree grid cells) and temporal (monthly and annual) patterns of global carbon emissions form terrestrial soils. Emissions include the respiration of both soil organisms and plant roots. Geographically referenced data of mean monthly air temperature and precipitation, soil organic carbon and nitrogen content, soil type and natural vegetation type were used in the model development. It was found that, at the global scale, the rates of soil CO{sub 2} efflux correlate significantly with temperature and precipitation, have a pronounced seasonal pattern in most locations, and contribute to observed wintertime increases in atmospheric CO{sub 2}.

981 citations

Journal ArticleDOI
TL;DR: This paper found that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm and that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the 2012-2014 drought in California.
Abstract: California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm–dry conditions like those that have created the acute human and ecosystem impacts associated with the “exceptional” 2012–2014 drought in California.

980 citations

Journal ArticleDOI
TL;DR: In this paper, extreme precipitation over land has increased over the wettest and driest regions and is likely to keep intensifying over the twenty-first century and this has key implications for dry regions, which may be unprepared for the potential related flooding.
Abstract: Extreme precipitation over land has increased over the wettest and driest regions and is likely to keep intensifying over the twenty-first century. This has key implications for dry regions, which may be unprepared for the potential related flooding.

975 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
89% related
Climate change
99.2K papers, 3.5M citations
87% related
Global warming
36.6K papers, 1.6M citations
85% related
Vegetation
49.2K papers, 1.4M citations
85% related
Water content
49.8K papers, 1.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237,839
202214,365
20212,302
20201,964
20191,942
20181,773