scispace - formally typeset
Search or ask a question
Topic

Precipitation

About: Precipitation is a research topic. Over the lifetime, 32861 publications have been published within this topic receiving 990496 citations. The topic is also known as: rain & rainfall.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, Zhang et al. investigated the impact of El Nino on the precipitation in China for different seasons and found that negative precipitation anomalies appear in both southern and northern parts of China, while in between around the lower reaches of the Yangtze River and the Huaihe River valleys the precipitation anomalies tend to be positive.
Abstract: The impact of El Nino on the precipitation in China for different seasons are investigated diagnostically. It is found that El Nino can influence the precipitation in China significantly during its mature phase. In the Northern winter, spring and autumn, the positive precipitation anomalies are found in the southern part of China during the El Nino mature phase. In the Northern summer, the patterns of the precipitation anomalies in the El Nino mature phase are different from those in the other seasons. The negative precipitation anomalies appear in both southern and northern parts of China, while in between around the lower reaches of the Yangtze River and the Huaihe River valleys the precipitation anomalies tend to be positive. In the Northern winter, spring and autumn, the physical process by which El Nino affects the precipitation in the southern part of China can be explained by the features of the circulation anomalies over East Asia during the El Nino mature phase (Zhang et al., 1996). The appearance of an anticyclonic anomaly to the north of the maritime continent in the lower troposphere during the El Nino mature phase intensifies the subtropical high in the western Pacific and makes it shift westward. The associated southwesterly flow is responsible for the positive precipitation anomalies in the southern part of China. In the Northern summer, the intensified western Pacific subtropical high covers the southeastern periphery of China so that the precipitation there becomes less. In addition, the weakening of the Indian monsoon provides less moisture inflow to the northern part of China.

435 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented estimates of water resources changes in three river basins in the Hindukush-Karakorum-Himalaya (HKH) region associated with climate change.

433 citations

Journal ArticleDOI
TL;DR: In this paper, a radar-based climatology of warm season precipitation "episodes" is presented, defined as time-space clusters of heavy precipitation that often result from sequences of organized convection such as squall lines, mesoscale convective systems, and mesoscal convective complexes.
Abstract: Herein preliminary findings are reported from a radar-based climatology of warm season precipitation ‘‘episodes.’’ Episodes are defined as time‐space clusters of heavy precipitation that often result from sequences of organized convection such as squall lines, mesoscale convective systems, and mesoscale convective complexes. Episodes exhibit coherent rainfall patterns, characteristic of propagating events, under a broad range of atmospheric conditions. Such rainfall patterns are most frequent under ‘‘weakly forced’’ conditions in midsummer. The longevity of episodes, up to 60 h, suggests an intrinsic predictability of warm season rainfall that significantly exceeds the lifetime of individual convective systems. Episodes are initiated primarily in response to diurnal and semidiurnal forcings. Diurnal forcing is dominant near the Rocky and Appalachian Mountains, whereas semidiurnal forcing is dominant between these cordilleras. A most common longitude of origin is at or near the east slope of the Continental Divide (1058W). These observations are consistent with a condition of continual thermal forcing, widespread hydrodynamic instability, and the existence of other processes that routinely excite, maintain, and regenerate organized convection. The propagation speed of major episodes is often in excess of rates that are easily attributable either to the phase speeds of large-scale forcing or to advection from low- to midlevel ‘‘steering’’ winds. It is speculated that wavelike mechanisms, in the free troposphere and/or the planetary boundary layer, may contribute to the rates of motion observed. Once understood, the representation of such mechanisms in forecast models offers the opportunity for improved predictions of warm season rainfall.

432 citations

Journal ArticleDOI
TL;DR: In this paper, a physically-based hydrologic model was used to assess the effects of systematic changes in precipitation and temperature on snow-affected portions of the global land area as projected by a suite of global climate models.
Abstract: For most of the global land area poleward of about 40° latitude, snow plays an important role in the water cycle. The (seasonal) timing of runoff in these areas is especially sensitive to projected losses of snowpack associated with warming trends, whereas projected (annual) runoff volume changes are primarily associated with precipitation changes, and to a lesser extent, with changes in evapotranspiration (ET). Regional studies in the USA (and especially the western USA) suggest that hydrologic adjustments to a warming climate have been ongoing since the mid-twentieth century. We extend the insights extracted from the western USA to the global scale using a physically based hydrologic model to assess the effects of systematic changes in precipitation and temperature on snow-affected portions of the global land area as projected by a suite of global climate models. While annual (and in some cases seasonal) changes in precipitation are a key driver of projected changes in annual runoff, we find, as in the western USA, that projected warming produces strong decreases in winter snow accumulation and spring snowmelt over much of the affected area regardless of precipitation change. Decreased snowpack produces decreases in warm-season runoff in many mid- to high-latitude areas where precipitation changes are either moderately positive or negative in the future projections. Exceptions, however, occur in some high-latitude areas, particular in Eurasia, where changes in projected precipitation are large enough to result in increased, rather than decreased, snow accumulation. Overall, projected changes in snowpack and the timing of snowmelt-derived runoff are largest near the boundaries of the areas that currently experience substantial snowfall, and at least qualitatively, they mirror the character of observed changes in the western USA. Copyright © 2008 John Wiley & Sons, Ltd.

432 citations

Book
01 Jan 1986
TL;DR: The basic theory of climate simulation which includes the fundamental equations, models, and numerical techniques for simulating the atmosphere, oceans, and sea ice is described in this article, and the responses of the climate to various environmental changes, such as variations in solar output or increases in atmospheric carbon dioxide, are modeled.
Abstract: The development and use of three-dimensional computer models of the earth's climate are discussed. The processes and interactions of the atmosphere, oceans, and sea ice are examined. The basic theory of climate simulation which includes the fundamental equations, models, and numerical techniques for simulating the atmosphere, oceans, and sea ice is described. Simulated wind, temperature, precipitation, ocean current, and sea ice distribution data are presented and compared to observational data. The responses of the climate to various environmental changes, such as variations in solar output or increases in atmospheric carbon dioxide, are modeled. Future developments in climate modeling are considered. Information is also provided on the derivation of the energy equation, the finite difference barotropic forecast model, the spectral transform technique, and the finite difference shallow water waved equation model.

432 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
89% related
Climate change
99.2K papers, 3.5M citations
87% related
Global warming
36.6K papers, 1.6M citations
85% related
Vegetation
49.2K papers, 1.4M citations
85% related
Water content
49.8K papers, 1.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237,839
202214,365
20212,302
20201,964
20191,942
20181,773