scispace - formally typeset
Search or ask a question
Topic

Precipitation

About: Precipitation is a research topic. Over the lifetime, 32861 publications have been published within this topic receiving 990496 citations. The topic is also known as: rain & rainfall.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a 3-yr (1998-2000) climatology of near-surface rainfall and stratiform rain fraction observed by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) was used to calculate the four-dimensional distribution of tropical latent heating on seasonal-to-annual time scales.
Abstract: A 3-yr (1998‐2000) climatology of near-surface rainfall and stratiform rain fraction observed by the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) was used to calculate the four-dimensional distribution of tropical latent heating on seasonal-to-annual time scales. The TRMM-derived latent heating was then used to force an idealized primitive equation model using an initial value approach in order to obtain the quasi-steady-state, nonlinear, zonally asymmetric atmospheric response to precipitating tropical cloud systems. In agreement with previous studies, an increase in stratiform rain fraction elevates circulation centers and strengthens the upper-level response. Furthermore, horizontal variations in the vertical heating profile implied by the PR stratiform rain fraction pattern lead to circulation anomalies of varying height and vertical extent that

372 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the impact of climate change on the seasonality of monsoon Asia and its effect on the variability of the monsoon rainfall in Southeast Asia and found that global precipitation anomalous showed increases that almost corresponded with increases in global temperature anomalies for the same period.
Abstract: Global warming and climate change is one of the most extensively researched and discussed topical issues affecting the environment. Although there are enough historical evidence to support the theory that climate change is a natural phenomenon, many research scientists are widely in agreement that the increase in temperature in the 20th century is anthropologically related. The associated effects are the variability of rainfall and cyclonic patterns that are being observed globally. In Southeast Asia the link between global warming and the seasonal atmospheric flow during the monsoon seasons shows varying degree of fuzziness. This study investigates the impact of climate change on the seasonality of monsoon Asia and its effect on the variability of monsoon rainfall in Southeast Asia. The comparison of decadal variation of precipitation and temperature anomalies before the 1970s found general increases which were mostly varying. But beyond the 1970s, global precipitation anomalous showed increases that almost corresponded with increases in global temperature anomalies for the same period. There are frequent changes and a shift westward of the Indian summer monsoon. Although precipitation is observed to be 70% below normal levels, in some areas the topography affects the intensity of rainfall. These shifting phenomenon of other monsoon season in the region are impacting on the variability of rainfall and the onset of monsoons in Southeast Asia and is predicted to delay for 15 days the onset of the monsoon in the future. The variability of monsoon rainfall in the SEA region is observed to be decadal and the frequency and intensity of intermittent flooding of some areas during the monsoon season have serious consequences on the human, financial, infrastructure and food security of the region.

372 citations

Journal ArticleDOI
TL;DR: In this article, a gauge-based analysis of hourly precipitation is constructed on a 0.25° latitude/longitude grid over China for a 3 year period from 2005 to 2007 by interpolating gauge reports from ∼2000 stations collected and quality controlled by the National Meteorological Information Center of the China Meteorological Administration.
Abstract: [1] A gauge-based analysis of hourly precipitation is constructed on a 0.25° latitude/longitude grid over China for a 3 year period from 2005 to 2007 by interpolating gauge reports from ∼2000 stations collected and quality controlled by the National Meteorological Information Center of the China Meteorological Administration. Gauge-based precipitation analysis is applied to examine the performance of six high-resolution satellite precipitation estimates, including Joyce et al.'s (2004) Climate Prediction Center Morphing Technique (CMORPH) and the arithmetic mean of the microwave estimates used in CMORPH; Huffman et al.'s (2007) Tropical Rainfall Measuring Mission (TRMM) precipitation product 3B42 and its real-time version 3B42RT; Turk et al.'s (2004) Naval Research Laboratory blended product; and Hsu et al.'s (1997) Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Network (PERSIANN). Our results showed the following: (1) all six satellite products are capable of capturing the overall spatial distribution and temporal variations of precipitation reasonably well; (2) performance of the satellite products varies for different regions and different precipitation regimes, with better comparison statistics observed over wet regions and for warm seasons; (3) products based solely on satellite observations present regionally and seasonally varying biases, while the gauge-adjustment procedures applied in TRMM 3B42 remove the large-scale bias almost completely; (4) CMORPH exhibits the best performance in depicting the spatial pattern and temporal variations of precipitation; and (5) both the relative magnitude and the phase of the warm season precipitation over China are estimated quite well, but the early morning peak associated with the Mei-Yu rainfall over central eastern China is substantially under-estimated by all satellite products.

370 citations

Journal ArticleDOI
TL;DR: In this article, a daily set of surface meteorological forcings, model-derived surface moisture fluxes, and state variables for global land areas for the period of 1979-93 is described.
Abstract: A daily set of surface meteorological forcings, model-derived surface moisture fluxes, and state variables for global land areas for the period of 1979–93 is described. The forcing dataset facilitates global simulations and evaluation of land surface parameterizations without relying heavily on GCM output. Daily precipitation and temperature are based on station observations, daily wind speeds are based on National Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data, and the remaining meteorological forcing variables (shortwave radiation, longwave radiation, and vapor pressure) are derived from the precipitation and temperature series. The Variable Infiltration Capacity (VIC) land surface model is used to produce a set of derived fluxes and state variables, including snow water equivalent, evapotranspiration, runoff, and soil moisture storage. The main differences between the new dataset and other, similar datasets are the daily time step, the use of a sp...

369 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantify the spatial distribution of rainfall in tropical cyclones (TCs) over the global oceans using TRMM microwave imager rain estimates, and examine the relationship between the storm intensity, its geographical location, and the rainfall distribution, the dataset is stratified into three intensity groups and six oceanic basins.
Abstract: TRMM microwave imager rain estimates are used to quantify the spatial distribution of rainfall in tropical cyclones (TCs) over the global oceans. A total of 260 TCs were observed worldwide from 1 January 1998‐31 December 2000, providing 2121 instantaneous TC precipitation observations. To examine the relationship between the storm intensity, its geographical location, and the rainfall distribution, the dataset is stratified into three intensity groups and six oceanic basins. The three intensity classes used in this study are tropical storms (TSs) with winds ,33 m s21, category 1‐2 hurricane-strength systems (CAT12) with winds from 34‐48 m s21, and category 3‐5 systems (CAT35) with winds .49 m s21. The axisymmetric component of the TC rainfall is represented by the radial distribution of the azimuthal mean rainfall rates ( R). The mean rainfall distribution is computed using 10-km annuli from the storm center to a 500-km radius. The azimuthal mean rain rates vary with storm intensity and from basin to basin. The maximum R is about 12 mm h21 for CAT35, but decreases to 7m m h 21 for CAT12, and to 3 mm h21 for TS. The radius from the storm center of the maximum rainfall decreases with increasing storm intensity, from 50 km for TS to 35 km for CAT35 systems. The asymmetric component is determined by the first-order Fourier decomposition in a coordinate system relative to the storm motion. The asymmetry in TC rainfall varies significantly with both storm intensity and geographic locations. For the global average of all TCs, the maximum rainfall is located in the front quadrants. The location of the maximum rainfall shifts from the front-left quadrant for TS to the front-right for CAT35. The amplitude of the asymmetry varies with intensity as well; TS shows a larger asymmetry than CAT12 and CAT35. These global TC rainfall distributions and variability observed in various ocean basins should help to improve TC rainfall forecasting worldwide.

369 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
89% related
Climate change
99.2K papers, 3.5M citations
87% related
Global warming
36.6K papers, 1.6M citations
85% related
Vegetation
49.2K papers, 1.4M citations
85% related
Water content
49.8K papers, 1.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237,839
202214,365
20212,302
20201,964
20191,942
20181,773