scispace - formally typeset
Search or ask a question
Topic

Precipitation

About: Precipitation is a research topic. Over the lifetime, 32861 publications have been published within this topic receiving 990496 citations. The topic is also known as: rain & rainfall.


Papers
More filters
Journal ArticleDOI
TL;DR: The isotopic composition of precipitation and river runoff in the vicinity of the North American Great Lakes is characterized by a higher deuterium-excess value than observed in the advecting air masses as discussed by the authors.
Abstract: The isotopic composition of precipitation and river runoff in the vicinity of the North American Great Lakes is characterized by a higher deuterium-excess value than observed in the advecting air masses. It is suggested that this indicates that evaporated moisture from the surface waters is mixed with the atmosphere waters. A preliminary estimate of the atmospheric water balance during summer and autumn indicates that between 4.6%–15.7% of the atmospheric water content downwind from the Great Lakes is derived from lake evaporation during summer.

355 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the radar-indicated structures and other features of extreme rain events in the United States over a 3-yr period and found that 60% of the total number of events are associated with mesoscale convective systems (MCSs).
Abstract: This study examines the radar-indicated structures and other features of extreme rain events in the United States over a 3-yr period. A rainfall event is defined as “extreme” when the 24-h precipitation total at one or more stations surpasses the 50-yr recurrence interval amount for that location. This definition yields 116 such cases from 1999 to 2001 in the area east of the Rocky Mountains, excluding Florida. Two-kilometer national composite radar reflectivity data are then used to examine the structure and evolution of each extreme rain event. Sixty-five percent of the total number of events are associated with mesoscale convective systems (MCSs). While a wide variety of organizational structures (as indicated by radar reflectivity data) are seen among the MCS cases, two patterns of organization are observed most frequently. The first type has a line, often oriented east–west, with “training” convective elements. It also has a region of adjoining stratiform rain that is displaced to the north of the line. The second type has a back-building or quasi-stationary area of convection that produces a region of stratiform rain downstream. Surface observations and composite analysis of Rapid Update Cycle Version 2 (RUC-2) model data reveal that training line/adjoining stratiform (TL/AS) systems typically form in a very moist, unstable environment on the cool side of a preexisting slow-moving surface boundary. On the other hand, back-building/quasistationary (BB) MCSs are more dependent on mesoscale and storm-scale processes, particularly lifting provided by storm-generated cold pools, than on preexisting synoptic boundaries.

355 citations

Journal ArticleDOI
TL;DR: In this paper, the cumulative distribution function for normalized annual precipitation is derived in terms of two parameters of the storm sequence, the mean number of storms per year and the order of the gamma distribution.
Abstract: Point precipitation is represented by Poisson arrivals of rectangular intensity pulses that have random depth and duration. By assuming the storm depths to be independent and identically gamma distributed, the cumulative distribution function for normalized annual precipitation is derived in terms of two parameters of the storm sequence, the mean number of storms per year and the order of the gamma distribution. In comparison with long-term observations in a subhumid and an arid climate it is demonstrated that when working with only 5 years of storm observations this method tends to improve the estimate of the variance of the distribution of the normalized annual values over that obtained by conventional hydrologic methods which utilize only the observed annual totals.

354 citations

Journal ArticleDOI
TL;DR: In this paper, the types of mesoscale organization that occur in association with major rain events in Oklahoma (at least 25 mm of rain in 24 hours over an area exceeding 12 500 km2) were investigated.
Abstract: Radar reflectivity and raingage data obtained during six springtimes indicate the types of mesoscale organization that occur in association with major rain events in Oklahoma (at least 25 mm of rain in 24 h over an area exceeding 12 500 km2). In these storms the primary rain area is found to be a contiguous region of precipitation 10s to 100s of km in scale that consists partly of deep convection and partly of stratiform rain. The patterns of rain formed by the convective and stratiform areas comprise a continuous spectrum of mesoscale structures. About two-thirds of the cases examined exhibited variations on the type of organization in which convective cells arranged in a moving line are followed by a region of stratiform rain. Storm organization was graded according to the degree to which it matched an idealized model of this “leading-line/trailing-stratiform” structure. The precipitation pattern was further graded according to whether its structure was relatively symmetric with respect to an a...

353 citations

Journal ArticleDOI
TL;DR: In this article, the authors sampled 16 soil profiles along an arid to humid climosequence on Kohala Mountain, Hawaii, and found that weathering and soil properties change in a nonlinear fashion with increased rainfall.

352 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
89% related
Climate change
99.2K papers, 3.5M citations
87% related
Global warming
36.6K papers, 1.6M citations
85% related
Vegetation
49.2K papers, 1.4M citations
85% related
Water content
49.8K papers, 1.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20237,839
202214,365
20212,302
20201,964
20191,942
20181,773