scispace - formally typeset
Search or ask a question
Topic

Precision rectifier

About: Precision rectifier is a research topic. Over the lifetime, 4952 publications have been published within this topic receiving 63668 citations. The topic is also known as: super diode.


Papers
More filters
Patent
12 Sep 1997
TL;DR: In this paper, a low power switched rectifier circuit is realized using P-MOS and N -MOS FET switches that are turned ON/OFF at just the right time by a detector and inverter circuit to rectify an incoming ac signal in a highly efficient manner.
Abstract: A low power switched rectifier circuit is realized using P-MOS and N-MOS FET switches that are turned ON/OFF at just the right time by a detector and inverter circuit (which form an integral part of the rectifier circuit) to rectify an incoming ac signal in a highly efficient manner. Parasitic diodes and transistors that form an integral part of the FET circuitry respond to and rectify the incoming signal during start up, i.e., when no supply voltage is yet present, thereby providing sufficient operating voltage for the FET switches to begin to perform their intended rectifying function. In the absence of an incoming ac signal, i.e., during the time between biphasic pulses, the rectifier circuit is biased with an extremely small static bias current; but in the presence of an incoming ac signal, at a time when the positive and negative phases of the incoming signal are to be connected to positive and negative supply lines, a much larger dynamic bias current is automatically triggered.

201 citations

Patent
13 Nov 2007
TL;DR: In this paper, the authors proposed a rectifier circuit with at least a first capacitor, a second capacitor, and a diode which are sequentially connected in series in a path which connects an input terminal and one of two output terminals.
Abstract: It is an object of the present invention to provide a rectifier circuit that can suppress deterioration or dielectric breakdown of a semiconductor element due to excessive current. A rectifier circuit of the present invention includes at least a first capacitor, a second capacitor, and a diode which are sequentially connected in series in a path which connects an input terminal and one of two output terminals, and a transistor. The second capacitor is connected between one of a source region and a drain region and a gate electrode of the transistor. Further, the other one of the source region and the drain region and the other one of two output terminals are connected each other.

192 citations

Proceedings ArticleDOI
02 Oct 1993
TL;DR: In this article, a novel approach to improving power factor and reducing harmonics generated by a three-phase diode-rectifier-type utility interface is proposed, which consists of a novel interconnection of a star/delta power transformer between the AC and DC sides of the diode rectifier topology.
Abstract: A novel approach to improving power factor and reducing harmonics generated by a three-phase diode-rectifier-type utility interface is proposed. This approach is passive and consists of a novel interconnection of a star/delta power transformer between the AC and DC sides of the diode rectifier topology. This interconnection, in combination with the 120 degrees conduction intervals of each diode, is shown to generate a circulating third-harmonic current between the AC and DC side of the rectifier bridge. This current is shown to drastically improve the performance of the diode-rectifier-type interface. The resulting input current is near-sinusoidal, with significant reduction in line current harmonics. The proposed system can be viewed as a cost-effective retrofit to the existing diode rectifier utility interface applications. A design example illustrates the sizing of the necessary passive components. Selected results were verified experimentally on a laboratory prototype system. >

192 citations

Proceedings ArticleDOI
05 Nov 1991
TL;DR: In this article, a snubber circuit for the constant frequency PWM boost converter is presented to provide soft switching transitions for the power switches and thus to reduce the power losses, component stresses, and noise generation.
Abstract: A novel snubber circuit for the constant frequency pulsewidth-modulation (PWM) boost converter is presented to provide soft-switching transitions for the power switches and thus to reduce the power losses, component stresses, and noise generation. The proposed topology is very useful for the input current shapers in AC-AC applications. The operation of the circuit including its control block is explained and illustrated for a 1.5 kW, 100 kHz high-performance power-factor-corrected telecommunication rectifier. >

190 citations

Journal ArticleDOI
TL;DR: A linear two-port model for an N-stage modified-Greinacher full-wave rectifier that predicts the overall conversion efficiency at low power levels where the diodes are operating near their threshold voltage is proposed.
Abstract: This paper proposes a linear two-port model for an N-stage modified-Greinacher full-wave rectifier. It predicts the overall conversion efficiency at low power levels where the diodes are operating near their threshold voltage. The output electrical behavior of the rectifier is calculated as a function of the received power and the antenna parameters. Moreover, the two-port parameter values are computed for particular input voltages and output currents for the complete N-stage rectifier circuit using only the measured I-V and C-V characteristics of a single diode. To validate the model a three-stage modified-Greinacher full-wave rectifier was realized in an silicon-on-sapphire (SOS) CMOS 0.5-/spl mu/m technology. The measurements are in excellent agreement with the values calculated using the presented model.

190 citations


Network Information
Related Topics (5)
AC power
80.9K papers, 880.8K citations
82% related
Voltage
296.3K papers, 1.7M citations
81% related
Capacitor
166.6K papers, 1.4M citations
81% related
Electric power system
133K papers, 1.7M citations
80% related
Control theory
299.6K papers, 3.1M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202345
202299
20217
202017
201910
201833