scispace - formally typeset
Search or ask a question
Topic

Pregnenolone

About: Pregnenolone is a research topic. Over the lifetime, 3539 publications have been published within this topic receiving 126444 citations. The topic is also known as: (3b)-3-hydroxy-Pregn-5-en-20-one & 3-Hydroxypregn-5-en-20-one.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that thyroid hormones synergize with FSH to exert direct stimulatory effects on granulosa cell functions, including morphological differentiation, LH/human CG receptor formation and steroidogenic enzyme induction.
Abstract: To characterize thyroid hormone action on the ovary, the direct effects of T4 or T3 were investigated in vitro using a monolayer culture system of porcine granulosa cells. Monolayer cultures were maintained for 6 days in 4% serum-supplemented medium in the absence or presence of porcine FSH (20 ng/ml), with or without graded doses of T4 or T3. Combined treatment with FSH and T4 (10(-7) M) induced morphological alternation resembling epithelioid cells, while FSH alone or T4 alone failed to bring about the epithelioid morphology. Concomitant treatment with FSH and T4 (10(-7) M) markedly increased FSH-stimulated induction of [125I]iodo-human CG binding to cultured granulosa cells obtained from small follicles. The combined treatment with FSH and T4 (10(-7) M) also resulted in a significant increase in progesterone and estrogen secretion by the cultured cells relative to treatment with FSH alone. Increases in progesterone, 17 beta-estradiol, and estrone secretion caused by the combined treatment with FSH and T4 (10(-7) M) were further augmented in response to the addition of exogenously provided substrate pregnenolone, testosterone, and androstenedione, respectively. Furthermore, aromatase activity assessed by the release of [3H]water from [1 beta-3H, 4-14C]androstenedione was significantly higher in cells treated concomitantly with FSH and T4 (10(-7) M) than that in cells treated with FSH alone. All the stimulatory effects of T4 (10(-7) M) on the morphological and functional differentiation of cultured granulosa cells were also found in combined treatment with FSH and T3 (10(-9) M). Either treatment with higher or lower concentrations of T4 or T3 gave attenuated effects, and T4 or T3 alone without FSH was incapable of exhibiting these stimulatory effects. These findings suggest that thyroid hormones synergize with FSH to exert direct stimulatory effects on granulosa cell functions, including morphological differentiation, LH/human CG receptor formation and steroidogenic enzyme (3 beta-hydroxysteroid dehydrogenase and aromatase) induction. Hence, decreases in ovarian functions during the states of hypo- or hyperthyroidism may account for diminished responsiveness of the granulosa cells to FSH.

136 citations

Journal ArticleDOI
TL;DR: These cells provide a viable and highly reproducible system for the in vitro study of ACTH action and a fluorometric assay has been developed that permits precise quantitation of steroid output within several minutes' incubation.

135 citations

Journal ArticleDOI
TL;DR: A mechanism of neurosteroid action, the control of microtubule or, more generally, of neural cytoskeleton dynamics, with potential roles in brain development, plasticity, and aging is proposed.
Abstract: Fetal or adult rat-brain cytosol and fetal rat-brain microtubules contain a high-affinity, low-capacity pregnenolone-binding protein. The equilibrium dissociation constant is in the 30–50 nM range. The best competitors (in decreasing order) are pregnenolone sulfate, progesterone, Δ5-pregnene-3β,20α-diol, and 3β-hydroxy-5α-pregnan-20-one. It was hypothesized that the pregnenolone-binding protein pertained to microtubule-associated proteins (MAPs). Indeed, partial purification of fetal brain cytosol by fast pressure liquid chromatography with sequential ion-exchange and gel-filtration columns yielded two fractions, one of very high molecular mass, >200 kDa, and the other of 40–60 kDa, enriched in [3H]pregnenolone-binding activity and in proteins immunolabeled with monoclonal anti-tubulin and anti-MAP2 antibodies. Because many proteins are associated with microtubules, binding assays were repeated with purified calf-brain tubulin, MAP2, and Tau protein. Only the MAP2 fraction showed saturable [3H]pregnenolone binding with an affinity very close to that of rat-brain microtubules, but with a much larger concentration of binding sites (16 pmol/mg MAP2), which was increased more than 8-fold after copolymerization of MAP2 with tubulin. Finally, steroid effects on microtubule-assembly kinetics were assayed. Pregnenolone induced a large, dose-related increase of both the rate and extent of MAP2-induced tubulin assembly, whereas progesterone, inactive per se, counteracted the stimulatory effect of pregnenolone. Electron microscopic analysis confirmed that pregnenolone-increased assembly of microtubules produced a completely normal structure. The stimulatory effect on MAP2–tubulin interaction was also observed in fetal rat-brain neuron cultures. Therefore, we propose a mechanism of neurosteroid action, the control of microtubule or, more generally, of neural cytoskeleton dynamics, with potential roles in brain development, plasticity, and aging.

135 citations

Journal ArticleDOI
TL;DR: Many endocrine disruptors act as antiandrogens via directly inhibiting one or more enzymes for testosterone biosynthesis and metabolic activation, including industrial materials and pesticides/biocides and plant constituents.
Abstract: The Leydig cells of the testis have the capacity to biosynthesize testosterone from cholesterol. Testosterone and its metabolically activated product dihydrotestosterone are critical for the development of male reproductive system and spermatogenesis. At least four steroidogenic enzymes are involved in testosterone biosynthesis: Cholesterol side chain cleavage enzyme (CYP11A1) for the conversion of cholesterol into pregnenolone within the mitochondria, 3β-hydroxysteroid dehydrogenase (HSD3B), for the conversion of pregnenolone into progesterone, 17α-hydroxylase/17,20-lyase (CYP17A1) for the conversion of progesterone into androstenedione and 17β-hydroxysteroid dehydrogenase (HSD17B3) for the formation of testosterone from androstenedione. Testosterone is also metabolically activated into more potent androgen dihydrotestosterone by two isoforms 5α-reductase 1 (SRD5A1) and 2 (SRD5A2) in Leydig cells and peripheral tissues. Many endocrine disruptors act as antiandrogens via directly inhibiting one or more enzymes for testosterone biosynthesis and metabolic activation. These chemicals include industrial materials (perfluoroalkyl compounds, phthalates, bisphenol A and benzophenone) and pesticides/biocides (methoxychlor, organotins, 1,2-dibromo-3-chloropropane and prochloraz) and plant constituents (genistein and gossypol). This paper reviews these endocrine disruptors targeting steroidogenic enzymes.

134 citations

Journal ArticleDOI
TL;DR: Five steroids were extracted from the brains of adult male rats, rabbits, and dogs and the sulfolipid conjugates are relatively abundant in brain, particularly those of P and D, and this suggests that, in the search for the physiological significance of these brain constituents, these conjugate warrant attention.
Abstract: Five steroids--3 beta-hydroxypregn-5-en-20-one (pregnenolone; P), 3 beta-hydroxy-5 alpha-pregnan-20-one (3 beta-AP), 3 alpha-hydroxy-5 alpha-pregnan-20-one (3 alpha-AP), 3 beta-hydroxyandrost-5-en-17-one (dehydroepiandrosterone; D), and 3 beta-hydroxy-5 alpha-androstan-17-one (EpiA)--were extracted from the brains of adult male rats, rabbits, and dogs. The steroids exist in this organ as unconjugated compounds and as sulfates, lipoidal esters, and sulfolipids. The techniques for separating these four classes of steroids from each other and for separating the five steroids from each other are described. In all cases, the steroids were identified by their retention time (Rt) on HPLC, their Rt by gas chromatography, and by selected ion monitoring of their mass spectra. The latter were also used for quantification. In their reaction toward organic bases, the sulfolipid conjugates resemble previously described sulfolipids of cholesterol and sitosterol. These conjugates are relatively abundant in brain, particularly those of P and D, and this suggests that, in the search for the physiological significance of these brain constituents, these conjugates warrant attention.

133 citations


Network Information
Related Topics (5)
Hormone
38.3K papers, 1.2M citations
88% related
Estrogen
40.7K papers, 1.7M citations
87% related
Estrogen receptor
34.2K papers, 1.4M citations
82% related
Receptor
159.3K papers, 8.2M citations
80% related
Secretion
24.8K papers, 1.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202344
202255
202124
202028
201950
201835