scispace - formally typeset
Search or ask a question
Topic

Pressure angle

About: Pressure angle is a research topic. Over the lifetime, 1373 publications have been published within this topic receiving 10245 citations. The topic is also known as: angle of obliquity.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a gear driver for power transmission systems in various industrial applications is proposed, where gear drivers are one of the most crucial parts of power transmission system and there emerged a need to design gear drivers due to the rising performance require.
Abstract: Gears are one of the most crucial parts of power transmission systems in various industrial applications. Recently, there emerged a need to design gear drivers due to the rising performance require...

26 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented simulation results of a harmonic drive (HD) with involute flex spline (FS) profiles based on two-dimensional finite element analysis (FEA).
Abstract: Purpose This paper aims to present simulation results of a harmonic drive (HD) with involute flexspline (FS) profiles based on two-dimensional (2-D) finite element analysis (FEA). Design/methodology/approach First, the mathematical model of the FS with involute tooth profile was developed using a straight-edge rack cutter based on the theory of gearing. Then the engaging circular spline (CS) with conjugate tooth profile of FS was derived based on the enveloping theory and theory of gearing. Additionally, a mesh generation program was developed to discretize the FS based on the mathematical model. An elliptical wave generator (WG) was inserted into the FS, and a torque was applied to drive the FS meshing with the CS. The WG and the CS were both assumed to be rigid in the finite element model. Findings Finally, a 2-D FEA was conducted to explore the stress distribution on the FS, the engagement movement of the FS, the torsional stiffness and the engaged area of teeth of the HD under various conditions. Moreover, this research also studied the effect of changing pressure angle of the involute FS on the performance of the HD. Research limitations/implications The simulation model and methodology presented in this paper paved the way for further investigation and optimization of the HD with involute tooth profile FS and conjugate CS. Originality/value The simulation model of HD is established on conjugate shape based on the theory of gearing and an automatic mesh generation program is developed to generate the finite element model. The characteristics of the HD can thus be simulated according to the developed model.

26 citations

Journal ArticleDOI
TL;DR: A new design method is proposed based on the consideration of the comprehensive influences of pressure angle distribution, meshing backlash, tooth tip and root clearance that can flexibly control the shape change of the modification profile and accurately pre-control the transmission accuracy of the cycloid-pin gear.
Abstract: The tooth profile modification of cycloidal gears is important in the design and manufacture of precision reducers or rotary vector (RV) reducers for robots. The traditional modification design of cycloidal gears is mainly realized by setting various machining parameters, such as the size and center position of the grinding wheel. The traditional modification design has some disadvantages such as complex modification calculation, uncontrollable tooth profile curve shape and unstable meshing performance. Therefore, a new tooth profile modification method is proposed based on the consideration of the comprehensive influences of pressure angle distribution, meshing backlash, tooth tip and root clearance. Taking the pressure angle and modifications of tooth profile as the parameters of the modification function and the meshing backlash of gear teeth as constraints, the mathematical model for tooth profile modifications is built. The modifications are superimposed on the normal direction of the theoretical profile—the force transmission direction. The mathematical relationship between the modifications and the pressure angle distribution, which determines the force transmission performance, is established. Taking the straight line method, cycloid method and catenary method as examples, by means of the tooth contact analysis technology, the transmission error and minimum meshing backlash, which reflects the lost motion, of the newly modified profile are analyzed and verified. This proposed method can flexibly control the shape change of the modification profile and accurately pre-control the transmission accuracy of the cycloid-pin gear. It avoids the disadvantages of traditional modification methods, such as uncontrollable tooth profile shape and unstable meshing accuracy. The method allows good meshing characteristics, high force transmission performance and more precise tooth profile curve. The study provides a new design method of the modified profile of cycloidal gears.

26 citations

Patent
30 Aug 2004
TL;DR: In this paper, an internal planetary gear mechanism reduces a load applied to tooth surfaces of an external gear and an internal gear, a sliding portion such as a bearing and the like, by setting the amount of eccentricity α of an eccentric part to be larger than a theoretical value.
Abstract: An internal planetary gear mechanism reduces a load applied to tooth surfaces of an external gear and an internal gear, a sliding portion such as a bearing and the like. By setting the amount of eccentricity α of an eccentric part to be larger than a theoretical value, a distance between the center of the external gear and the center of the internal gear is increased to allow the reduction of a loss in the bearing and on the tooth surfaces of the gears, and a mesh zone between the internal gear and the external gear can be reduced to decrease a part at a large pressure angle, thereby reducing a loss generated by a large pressure angle. As a result of reduction in the mesh zone between the external gear and the internal gear, rolling contact of the gears is maintained.

25 citations

Patent
16 Mar 1977
TL;DR: In this paper, an alternative system of gearing that standardizes pitch instead of tooth numbers, so that pinions with several hundred teeth can be designed without sacrifice of any torque capacity relative to that of coarse-tooth involute gearing, is presented.
Abstract: Involute gearing can be optimized with respect to torque capacity only if the number of pinion teeth is standardized in a fairly narrow range, between about 15 and 40 teeth, depending on the tooth materials, pressure angle and gear ratio. The present invention discloses an alternative system of gearing that standardizes pitch instead of tooth numbers, so that pinions with several hundred teeth can be designed without sacrifice of any torque capacity relative to that of coarse-tooth involute gearing. The use of finer teeth reduces friction, heating and wear, but in particular helps to minimize operating noise.

25 citations


Network Information
Related Topics (5)
Machining
121.3K papers, 1M citations
78% related
Vibration
80K papers, 849.3K citations
72% related
Piston
176.1K papers, 825.4K citations
71% related
Residual stress
39K papers, 554.8K citations
71% related
Flange
131K papers, 564.9K citations
71% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202313
202244
202127
202038
201960
201841