scispace - formally typeset
Search or ask a question
Topic

Pressure-gradient force

About: Pressure-gradient force is a research topic. Over the lifetime, 920 publications have been published within this topic receiving 28413 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Optical trapping of dielectric particles by a single-beam gradient force trap was demonstrated for the first reported time, confirming the concept of negative light pressure due to the gradient force.
Abstract: Optical trapping of dielectric particles by a single-beam gradient force trap was demonstrated for the first reported time. This confirms the concept of negative light pressure due to the gradient force. Trapping was observed over the entire range of particle size from 10 μm to ~25 nm in water. Use of the new trap extends the size range of macroscopic particles accessible to optical trapping and manipulation well into the Rayleigh size regime. Application of this trapping principle to atom trapping is considered.

6,434 citations

Journal ArticleDOI
TL;DR: Theoretical expressions of the radiation pressure force for a dielectric sphere in the Rayleigh regime of light scattering under illumination of a Gaussian laser beam with the fundamental mode are derived in explicit form as a function of measurable quantities of the beam parameter in MKS units as mentioned in this paper.

789 citations

Journal ArticleDOI
Qiwen Zhan1
TL;DR: Numerical studies show that optical tweezers using radial polarization can stably trap metallic particles in 3-dimension due to the spatial separation of the gradient force and scattering/absorption forces.
Abstract: Metallic particles are generally considered difficult to trap due to strong scattering and absorption forces. In this paper, numerical studies show that optical tweezers using radial polarization can stably trap metallic particles in 3-dimension. The extremely strong axial component of a highly focused radially polarized beam provides a large gradient force. Meanwhile, this strong axial field component does not contribute to the Poynting vector along the optical axis. Consequently, it does not create axial scattering/absorption forces. Owing to the spatial separation of the gradient force and scattering/absorption forces, a stable 3-D optical trap for metallic particles can be formed.

747 citations

Journal ArticleDOI
TL;DR: A pressure-gradient algorithm that achieves more accurate hydrostatic balance between the two components and does not lose as much accuracy with nonuniform vertical grids at relatively coarse resolution, and generalized the monotonicity constraint to guarantee nonnegative physical stratification of the reconstructed density profile in the case of compressible equation of state.
Abstract: [1] Discretization of the pressure-gradient force is a long-standing problem in terrain-following (or σ) coordinate oceanic modeling. When the isosurfaces of the vertical coordinate are not aligned with either geopotential surfaces or isopycnals, the horizontal pressure gradient consists of two large terms that tend to cancel; the associated pressure-gradient error stems from interference of the discretization errors of these terms. The situation is further complicated by the nonorthogonality of the coordinate system and by the common practice of using highly nonuniform stretching for the vertical grids, which, unless special precautions are taken, causes both a loss of discretization accuracy overall and an increase in interference of the component errors. In the present study, we design a pressure-gradient algorithm that achieves more accurate hydrostatic balance between the two components and does not lose as much accuracy with nonuniform vertical grids at relatively coarse resolution. This algorithm is based on the reconstruction of the density field and the physical z coordinate as continuous functions of transformed coordinates with subsequent analytical integration to compute the pressure-gradient force. This approach allows not only a formally higher order of accuracy, but it also retains and expands several important symmetries of the original second-order scheme to high orders [Mellor et al., 1994; Song, 1998], which is used as a prototype. It also has built-in monotonicity constraining algorithm that prevents appearance of spurious oscillations of polynomial interpolant and, consequently, insures numerical stability and robustness of the model under the conditions of nonsmooth density field and coarse grid resolution. We further incorporate an alternative method of dealing with compressibility of seawater, which escapes pressure-gradient errors associated with interference of the nonlinear nature of equation of state and difficulties to achieve accurate polynomial fits of resultant in situ density profiles. In doing so, we generalized the monotonicity constraint to guarantee nonnegative physical stratification of the reconstructed density profile in the case of compressible equation of state. To verify the new method, we perform traditional idealized (Seamount) and realistic test problems.

745 citations

Journal ArticleDOI
TL;DR: Comparison of trapping forces for latex and gold spheres demonstrates that the gradient force is the major determinant of trapping strength and that competing effects, such as scattering or radiometric forces, are relatively minor.
Abstract: Metallic objects reflect light and have generally been considered poor candidates for optical traps, particularly with optical tweezers, which rely on a gradient force to provide trapping. We demonstrate that stable trapping can occur with optical tweezers when they are used with small metallic Rayleigh particles. In this size regime, the scattering pictures for metals and dielectrics are similar, and the larger polarizability of metals implies that trapping forces are greater. The latter fact makes the use of metal particles attractive for certain biological applications. Comparison of trapping forces for latex and gold spheres demonstrates that the gradient force is the major determinant of trapping strength and that competing effects, such as scattering or radiometric forces, are relatively minor.

738 citations


Network Information
Related Topics (5)
Turbulence
112.1K papers, 2.7M citations
81% related
Particle
96.5K papers, 1.9M citations
79% related
Magnetic field
167.5K papers, 2.3M citations
78% related
Electron
111.1K papers, 2.1M citations
77% related
Nucleation
63.8K papers, 1.6M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202313
202227
202127
202028
201935
201836