scispace - formally typeset

Topic

Prim's algorithm

About: Prim's algorithm is a(n) research topic. Over the lifetime, 775 publication(s) have been published within this topic receiving 17971 citation(s). The topic is also known as: DJP algorithm & Jarník algorithm.


Papers
More filters
Journal ArticleDOI
TL;DR: An algorithm is presented which finds a p-median of a tree (for $p > 1$) in time $O(n^2 \cdot p^2 )$.
Abstract: It is shown that the problem of finding a p-median of a network is an $NP$-hard problem even when the network has a simple structure (e.g., planar graph of maximum vertex degree 3). However, results leading to efficient algorithms are presented when the network is a tree: In particular, we first show that a 1-median of a tree is identical to its w-centroid, and obtain Goldman’s $O(n)$ algorithm for finding a 1-median of a tree out of more general considerations. Then, we present an algorithm which finds a p-median of a tree (for $p > 1$) in time $O(n^2 \cdot p^2 )$.

1,297 citations

Journal ArticleDOI
TL;DR: A distributed algorithm is presented that constructs the minimum weight spanning tree in a connected undirected graph with distinct edge weights that can be initiated spontaneously at any node or at any subset of nodes.
Abstract: Abstract : A distributed algorithm is presented that constructs the minimum weight spanning tree in a connected undirected graph with distinct edge weights. A processor exists at each node of the graph, knowing initially only the weights of the adjacent edges. The processors obey the same algorithm and exchange messages with neighbors until the tree is constructed. The total number of messages required for a graph of N nodes and E edges is at most 5N log of N to the base 2 + 2E and a message contains at most one edge weight plus log of 8N to the base 2 bits. The algorithm can be initiated spontaneously at any node or at any subset of nodes.

1,111 citations

ReportDOI
01 Oct 1979
Abstract: : A distributed algorithm is presented that constructs the minimum weight spanning tree in a connected undirected graph with distinct edge weights. A processor exists at each node of the graph, knowing initially only the weights of the adjacent edges. The processors obey the same algorithm and exchange messages with neighbors until the tree is constructed. The total number of messages required for a graph of N nodes and E edges is at most 5N log of N to the base 2 + 2E and a message contains at most one edge weight plus log of 8N to the base 2 bits. The algorithm can be initiated spontaneously at any node or at any subset of nodes.

1,059 citations

Journal ArticleDOI
TL;DR: There are several apparently independent sources and algorithmic solutions of the minimum spanning tree problem and their motivations, and they have appeared in Czechoslovakia, France, and Poland, going back to the beginning of this century.
Abstract: It is standard practice among authors discussing the minimum spanning tree problem to refer to the work of Kruskal(1956) and Prim (1957) as the sources of the problem and its first efficient solutions, despite the citation by both of Boruvka (1926) as a predecessor. In fact, there are several apparently independent sources and algorithmic solutions of the problem. They have appeared in Czechoslovakia, France, and Poland, going back to the beginning of this century. We shall explore and compare these works and their motivations, and relate them to the most recent advances on the minimum spanning tree problem.

714 citations

Journal ArticleDOI
TL;DR: A linear time algorithm for computing, given the component tree of a function, the dynamics of all its maxima, and a link between the dynamics, minimum spanning trees, and component trees is established.
Abstract: We show several properties of the ordered dynamics. In particular, we give necessary and sufficient conditions which indicate when a transformation preserves the dynamics of the regional maxima. We also establish a link between the dynamics, minimum spanning trees, and component trees. At last, we propose a linear time algorithm for computing, given the component tree of a function, the dynamics of all its maxima.

434 citations

Network Information
Related Topics (5)
Time complexity

36K papers, 879.5K citations

82% related
Tree (data structure)

44.9K papers, 749.6K citations

78% related
Metaheuristic

29.9K papers, 921K citations

78% related
Scheduling (computing)

78.6K papers, 1.3M citations

77% related
Computational complexity theory

30.8K papers, 711.2K citations

76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202113
20208
201919
201815
201722
201627