scispace - formally typeset
Search or ask a question
Topic

Primate

About: Primate is a research topic. Over the lifetime, 1250 publications have been published within this topic receiving 67388 citations. The topic is also known as: the primate order & primates.


Papers
More filters
Journal ArticleDOI
TL;DR: Ocular dominance columns are less well segregated in squirrel monkeys than macaques, but they are present; this fact is pertinent to a recent study reporting that ocular dominance Columns are absent in normal squirrel monkeys, but induced to form by strabismus.
Abstract: The squirrel monkey is the only primate reported to lack ocular dominance columns. Nothing anomalous about the visual capacity of squirrel monkeys has been found to explain their missing columns, leading to the suggestion that ocular dominance columns might be "an epiphenomenon, not serving any purpose" (Livingstone et al., 1995). Puzzled by the apparent lack of ocular dominance columns in squirrel monkeys, we made eye injections with transneuronal tracers in four normal squirrel monkeys. An irregular mosaic of columns, averaging 225 microns in width, was found throughout striate cortex. They were double-labeled by placing wheat germ agglutinin-horseradish peroxidase into the left eye and [3H]proline into the right eye. The tracers labeled opposite sets of interdigitating columns, proving they represent ocular dominance columns. The columns were much clearer in layer IVc alpha (magno-receiving) than IVc beta (parvo-receiving). In the lateral geniculate body, the parvo laminae showed extensive mixing of ocular inputs, suggesting that increased label spillover contributes to the blurred columns in layer IVc beta. The cytochrome oxidase (CO) patches were organized into distinct rows, but they bore no consistent relationship to the ocular dominance columns. These experiments indicate that ocular dominance columns are less well segregated in squirrel monkeys than macaques, but they are present. This fact is pertinent to a recent study reporting that ocular dominance columns are absent in normal squirrel monkeys, but induced to form by strabismus (Livingstone, 1996).

93 citations

Journal ArticleDOI
TL;DR: Core microbiota analyses identified several key taxa—including microbes within the Ruminococcaceae and Lachnospiraceae families—that were shared by over 90% of the monkeys in this study, highlighting the importance of diet in captive colobines.
Abstract: Both diet and host phylogeny shape the gut microbial community, and separating out the effects of these variables can be challenging. In this study, high-throughput sequencing was used to evaluate the impact of diet and phylogeny on the gut microbiota of nine colobine monkey species (N = 64 individuals). Colobines are leaf-eating monkeys that fare poorly in captivity-often exhibiting gastrointestinal (GI) problems. This study included eight Asian colobines (Rhinopithecus brelichi, Rhinopithecus roxellana, Rhinopithecus bieti, Pygathrix nemaeus, Nasalis larvatus, Trachypithecus francoisi, Trachypithecus auratus, and Trachypithecus vetulus) and one African colobine (Colobus guereza). Monkeys were housed at five different captive institutes: Panxi Wildlife Rescue Center (Guizhou, China), Beijing Zoo, Beijing Zoo Breeding Center, Singapore Zoo, and Singapore Zoo Primate Conservation Breeding Center. Captive diets varied widely between institutions, but within an institution, all colobine monkey species were fed nearly identical or identical diets. In addition, four monkey species were present at multiple captive institutes. This allowed us to parse the effects of diet and phylogeny in these captive colobines. Gut microbial communities clustered weakly by host species and strongly by diet, and overall, colobine phylogenetic relationships were not reflected in gut microbiota analyses. Core microbiota analyses also identified several key taxa-including microbes within the Ruminococcaceae and Lachnospiraceae families-that were shared by over 90% of the monkeys in this study. Microbial species within these families include many butyrate producers that are important for GI health. These results highlight the importance of diet in captive colobines.

93 citations

Journal ArticleDOI
TL;DR: The genetic results indicate that, as in other atelins, dispersal by females is common, but some male dispersal likely occurs as well, and that direct female-female competition is an important feature of woolly monkey reproductive biology.
Abstract: For species of primates in which females emigrate, we would expect males within groups to be related to one another. Kin selection theory suggests that these males should associate preferentially with one another, be more affiliative and cooperative with one another than females are, and compete less overtly with one another over reproductive opportunities than males in female philopatric taxa do. Precisely these patterns of social behavior characterize well-studied populations of 2 of the 3 atelin primate genera: spider monkeys (Ateles) and muriquis (Brachyteles). For the third atelin genus, Lagothrix, patterns of intragroup social behavior have been less well-documented. We studied the social and reproductive behavior of lowland woolly monkeys (Lagothrix lagotricha poeppigii) in Ecuador during a one-year observational study and subsequently used molecular techniques to investigate population genetic structure and dispersal patterns for this taxon. Among adult male woolly monkeys, both affiliative and agonistic interactions were rare, and males were seldom in close proximity to one another. Relationships among male woolly monkeys are best characterized as tolerant, especially in the context of mating wherein direct competition among males was minimal despite the fact that females mated with multiple males. Relationships among females were likewise generally tolerant but nonaffiliative, though females often directed harassment towards copulating pairs. Affiliative interactions that did occur among woolly monkeys tended to be directed either between the sexes—primarily from female to male—or from younger towards older males, and the proximity partners of females tended to be members of the opposite sex. These results suggest that bonds between the sexes may be more important than same-sex social relationships and that direct female-female competition is an important feature of woolly monkey reproductive biology. Our genetic results indicate that, as in other atelins, dispersal by females is common, but some male dispersal likely occurs as well. In some but not all groups we studied, nonjuvenile males within social groups were more closely related to one another on average than females were, which is consistent with greater male than female philopatry. However, differences in these patterns among our study groups may reflect local variation in dispersal behavior.

93 citations

Journal ArticleDOI
TL;DR: The results indicate that rhesus macaques map number onto space, suggesting that the association between number and space in human cognition is not purely a result of cultural experience and instead has deep evolutionary roots.

92 citations

Journal ArticleDOI
TL;DR: The findings suggest that the current OR gene repertoire in each species has been shaped by a complex interplay of phylogeny, anatomy, and habitat; therefore, multiple factors may contribute to the olfactory degeneration in primates.
Abstract: Primates have traditionally been regarded as vision-oriented animals with low olfactory ability, though this "microsmatic primates" view has been challenged recently. To clarify when and how degeneration of the olfactory system occurred and to specify the relevant factors during primate evolution, we here examined the olfactory receptor (OR) genes from 24 phylogenetically and ecologically diverse primate species. The results revealed that strepsirrhines with curved noses had functional OR gene repertoires that were nearly twice as large as those for haplorhines with simple noses. Neither activity pattern (nocturnal/diurnal) nor color vision system showed significant correlation with the number of functional OR genes while phylogeny and nose structure (haplorhine/strepsirrhine) are statistically controlled, but extent of folivory did. We traced the evolutionary fates of individual OR genes by identifying orthologous gene groups, demonstrating that the rates of OR gene losses were accelerated at the ancestral branch of haplorhines, which coincided with the acquisition of acute vision. The highest rate of OR gene loss was observed at the ancestral branch of leaf-eating colobines; this reduction is possibly linked with the dietary transition from frugivory to folivory because odor information is essential for fruit foraging but less so for leaf foraging. Intriguingly, we found accelerations of OR gene losses in an external branch to every hominoid species examined. These findings suggest that the current OR gene repertoire in each species has been shaped by a complex interplay of phylogeny, anatomy, and habitat; therefore, multiple factors may contribute to the olfactory degeneration in primates.

92 citations


Network Information
Related Topics (5)
Offspring
26.6K papers, 874.3K citations
76% related
Animal ecology
30.8K papers, 1M citations
76% related
Visual cortex
18.8K papers, 1.2M citations
76% related
Foraging
19.8K papers, 708.7K citations
76% related
Natural selection
9.2K papers, 659.9K citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023296
2022585
202133
202033
201930
201842