scispace - formally typeset
Search or ask a question

Showing papers on "Prinomastat published in 2013"


Journal ArticleDOI
TL;DR: Exploration and exploitation of MMP and TIMP balance in various malignant and nonmalignant lesions is going to be one of the most interesting facets of future use of this system for human health care.
Abstract: Matrix metalloproteinase (MMP) comprises a family of zinc-dependent endopeptidases that degrade various components of the extracellular matrix (ECM) and basement membrane. MMPs are involved in solid and hematological malignancy through modification of cell growth, activation of cancer cells and modulation of immune functions. Several polymorphisms of different MMPs such as MMP-1 (-1607 1G/2G), MMP-2 (-1306 C/T), MMP-3 (-1171 5A/6A) & MMP-9 (-1562 C/T) and their expression levels have been well documented in different types of solid cancer. These polymorphic variations were found to be associated with angiogenesis, cancer progression, invasion and metastasis. There is paucity of data available in the field of hematological malignancies. Hence the field of matrix biology of hematological malignancies is an area of active exploration. A number of MMP inhibitors (MMPIs) have been developed for the cancer treatment. The most extensively studied classes of MMP inhibitors include Batimastat, Marismastat, Salimatat, Prinomastat and Tanomastat. However, their efficacy and action have not been confirmed and more data is required. The application of one or more selective targeted MMPIs in combination with conventional anti-leukemic treatment may represent a positive approach in combat against hematopoietic malignancies. Balance of MMPs and TIMPs is altered in different malignancies and biochemical pathways. These alternations will add another dimension in the matrix biology of both solid tumor and leukemia. MMP and TIMP singly and in combination are increasingly being recognized as an important player in basic cellular biology. Exploration and exploitation of MMP and TIMP balance in various malignant and nonmalignant lesions is going to be one of the most interesting facets of future use of this system for human health care.

103 citations


Journal ArticleDOI
TL;DR: The present review summarizes the molecular pathogenesis of metastasis and the identification of novel molecular targets used in the discovery of antimetastatic agents, and the most promising agents that have shown remarkable clinical outcome are anti‐angiogenic agents.
Abstract: Tumour invasion and metastasis have been recognized as major causal factors in the morbidity and mortality among cancer patients. Many advances in the knowledge of cancer metastasis have yielded an impressive array of attractive drug targets, including enzymes, receptors and multiple signalling pathways. The present review summarizes the molecular pathogenesis of metastasis and the identification of novel molecular targets used in the discovery of antimetastatic agents. Several promising targets have been highlighted, including receptor tyrosine kinases, effector molecules involved in angiogenesis, matrix metalloproteinases (MMPs), urokinase plasminogen activator, adhesion molecules and their receptors, signalling pathways (e.g. phosphatidylinositol 3-kinase, phospholipase Cγ1, mitogen-activated protein kinases, c-Src kinase, c-Met kinases and heat shock protein. The discovery and development of potential novel therapeutics for each of the targets are also discussed in this review. Among these, the most promising agents that have shown remarkable clinical outcome are anti-angiogenic agents (e.g. bevacizumab). Newer agents, such as c-Met kinase inhibitors, are still undergoing preclinical studies and are yet to have their clinical efficacy proven. Some therapeutics, such as first-generation MMP inhibitors (MMPIs; e.g. marimastat) and more selective versions of them (e.g. prinomastat, tanomastat), have undergone clinical trials. Unfortunately, these drugs produced serious adverse effects that led to the premature termination of their development. In the future, third-generation MMPIs and inhibitors of signalling pathways and adhesion molecules could form valuable novel classes of drugs in the anticancer armamentarium to combat metastasis.

33 citations