scispace - formally typeset
Topic

Privacy software

About: Privacy software is a(n) research topic. Over the lifetime, 8597 publication(s) have been published within this topic receiving 237304 citation(s).

...read more

Papers
More filters

Journal ArticleDOI
Latanya Sweeney1Institutions (1)
TL;DR: The solution provided in this paper includes a formal protection model named k-anonymity and a set of accompanying policies for deployment and examines re-identification attacks that can be realized on releases that adhere to k- anonymity unless accompanying policies are respected.

...read more

Abstract: Consider a data holder, such as a hospital or a bank, that has a privately held collection of person-specific, field structured data. Suppose the data holder wants to share a version of the data with researchers. How can a data holder release a version of its private data with scientific guarantees that the individuals who are the subjects of the data cannot be re-identified while the data remain practically useful? The solution provided in this paper includes a formal protection model named k-anonymity and a set of accompanying policies for deployment. A release provides k-anonymity protection if the information for each person contained in the release cannot be distinguished from at least k-1 individuals whose information also appears in the release. This paper also examines re-identification attacks that can be realized on releases that adhere to k- anonymity unless accompanying policies are respected. The k-anonymity protection model is important because it forms the basis on which the real-world systems known as Datafly, µ-Argus and k-Similar provide guarantees of privacy protection.

...read more

7,135 citations


Journal ArticleDOI
TL;DR: This paper shows with two simple attacks that a \kappa-anonymized dataset has some subtle, but severe privacy problems, and proposes a novel and powerful privacy definition called \ell-diversity, which is practical and can be implemented efficiently.

...read more

Abstract: Publishing data about individuals without revealing sensitive information about them is an important problem. In recent years, a new definition of privacy called k-anonymity has gained popularity. In a k-anonymized dataset, each record is indistinguishable from at least k − 1 other records with respect to certain identifying attributes.In this article, we show using two simple attacks that a k-anonymized dataset has some subtle but severe privacy problems. First, an attacker can discover the values of sensitive attributes when there is little diversity in those sensitive attributes. This is a known problem. Second, attackers often have background knowledge, and we show that k-anonymity does not guarantee privacy against attackers using background knowledge. We give a detailed analysis of these two attacks, and we propose a novel and powerful privacy criterion called e-diversity that can defend against such attacks. In addition to building a formal foundation for e-diversity, we show in an experimental evaluation that e-diversity is practical and can be implemented efficiently.

...read more

3,549 citations


Book
Cynthia Dwork1, Aaron Roth2Institutions (2)
11 Aug 2014-
TL;DR: The preponderance of this monograph is devoted to fundamental techniques for achieving differential privacy, and application of these techniques in creative combinations, using the query-release problem as an ongoing example.

...read more

Abstract: The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition.After motivating and discussing the meaning of differential privacy, the preponderance of this monograph is devoted to fundamental techniques for achieving differential privacy, and application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some astonishingly powerful computational results, there are still fundamental limitations — not just on what can be achieved with differential privacy but on what can be achieved with any method that protects against a complete breakdown in privacy. Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power. Certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed.We then turn from fundamentals to applications other than queryrelease, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams is discussed.Finally, we note that this work is meant as a thorough introduction to the problems and techniques of differential privacy, but is not intended to be an exhaustive survey — there is by now a vast amount of work in differential privacy, and we can cover only a small portion of it.

...read more

3,541 citations


Book ChapterDOI
Cynthia Dwork1Institutions (1)
25 Apr 2008-
TL;DR: This survey recalls the definition of differential privacy and two basic techniques for achieving it, and shows some interesting applications of these techniques, presenting algorithms for three specific tasks and three general results on differentially private learning.

...read more

Abstract: Over the past five years a new approach to privacy-preserving data analysis has born fruit [13, 18, 7, 19, 5, 37, 35, 8, 32]. This approach differs from much (but not all!) of the related literature in the statistics, databases, theory, and cryptography communities, in that a formal and ad omnia privacy guarantee is defined, and the data analysis techniques presented are rigorously proved to satisfy the guarantee. The key privacy guarantee that has emerged is differential privacy. Roughly speaking, this ensures that (almost, and quantifiably) no risk is incurred by joining a statistical database. In this survey, we recall the definition of differential privacy and two basic techniques for achieving it. We then show some interesting applications of these techniques, presenting algorithms for three specific tasks and three general results on differentially private learning.

...read more

2,497 citations


Proceedings ArticleDOI
03 Apr 2006-
TL;DR: This paper shows with two simple attacks that a \kappa-anonymized dataset has some subtle, but severe privacy problems, and proposes a novel and powerful privacy definition called \ell-diversity, which is practical and can be implemented efficiently.

...read more

Abstract: Publishing data about individuals without revealing sensitive information about them is an important problem. In recent years, a new definition of privacy called \kappa-anonymity has gained popularity. In a \kappa-anonymized dataset, each record is indistinguishable from at least k—1 other records with respect to certain "identifying" attributes. In this paper we show with two simple attacks that a \kappa-anonymized dataset has some subtle, but severe privacy problems. First, we show that an attacker can discover the values of sensitive attributes when there is little diversity in those sensitive attributes. Second, attackers often have background knowledge, and we show that \kappa-anonymity does not guarantee privacy against attackers using background knowledge. We give a detailed analysis of these two attacks and we propose a novel and powerful privacy definition called \ell-diversity. In addition to building a formal foundation for \ell-diversity, we show in an experimental evaluation that \ell-diversity is practical and can be implemented efficiently.

...read more

2,339 citations


13


Network Information
Related Topics (5)
Information privacy

25.4K papers, 579.6K citations

89% related
Privacy by Design

7K papers, 177.9K citations

88% related
Personally identifiable information

12.8K papers, 229.3K citations

86% related
Trusted third party

2.9K papers, 60.9K citations

85% related
Computer security model

18.1K papers, 352.9K citations

85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20215
20201
20199
201858
2017625
2016878

Top Attributes

Show by:

Topic's top 5 most impactful authors

Lorrie Faith Cranor

35 papers, 3.6K citations

Elisa Bertino

20 papers, 1.1K citations

Florian Schaub

17 papers, 906 citations

Norman Sadeh

16 papers, 1.7K citations

Frank Kargl

15 papers, 410 citations