scispace - formally typeset
Search or ask a question
Topic

Probabilistic analysis of algorithms

About: Probabilistic analysis of algorithms is a research topic. Over the lifetime, 6838 publications have been published within this topic receiving 216580 citations.


Papers
More filters
Book
01 Jan 1990
TL;DR: The updated new edition of the classic Introduction to Algorithms is intended primarily for use in undergraduate or graduate courses in algorithms or data structures and presents a rich variety of algorithms and covers them in considerable depth while making their design and analysis accessible to all levels of readers.
Abstract: From the Publisher: The updated new edition of the classic Introduction to Algorithms is intended primarily for use in undergraduate or graduate courses in algorithms or data structures. Like the first edition,this text can also be used for self-study by technical professionals since it discusses engineering issues in algorithm design as well as the mathematical aspects. In its new edition,Introduction to Algorithms continues to provide a comprehensive introduction to the modern study of algorithms. The revision has been updated to reflect changes in the years since the book's original publication. New chapters on the role of algorithms in computing and on probabilistic analysis and randomized algorithms have been included. Sections throughout the book have been rewritten for increased clarity,and material has been added wherever a fuller explanation has seemed useful or new information warrants expanded coverage. As in the classic first edition,this new edition of Introduction to Algorithms presents a rich variety of algorithms and covers them in considerable depth while making their design and analysis accessible to all levels of readers. Further,the algorithms are presented in pseudocode to make the book easily accessible to students from all programming language backgrounds. Each chapter presents an algorithm,a design technique,an application area,or a related topic. The chapters are not dependent on one another,so the instructor can organize his or her use of the book in the way that best suits the course's needs. Additionally,the new edition offers a 25% increase over the first edition in the number of problems,giving the book 155 problems and over 900 exercises thatreinforcethe concepts the students are learning.

21,651 citations

Journal ArticleDOI
TL;DR: This paper compares the running times of several standard algorithms, as well as a new algorithm that is recently developed that works several times faster than any of the other methods, making near real-time performance possible.
Abstract: Minimum cut/maximum flow algorithms on graphs have emerged as an increasingly useful tool for exactor approximate energy minimization in low-level vision. The combinatorial optimization literature provides many min-cut/max-flow algorithms with different polynomial time complexity. Their practical efficiency, however, has to date been studied mainly outside the scope of computer vision. The goal of this paper is to provide an experimental comparison of the efficiency of min-cut/max flow algorithms for applications in vision. We compare the running times of several standard algorithms, as well as a new algorithm that we have recently developed. The algorithms we study include both Goldberg-Tarjan style "push -relabel" methods and algorithms based on Ford-Fulkerson style "augmenting paths." We benchmark these algorithms on a number of typical graphs in the contexts of image restoration, stereo, and segmentation. In many cases, our new algorithm works several times faster than any of the other methods, making near real-time performance possible. An implementation of our max-flow/min-cut algorithm is available upon request for research purposes.

4,463 citations

Book
01 Jan 1995
TL;DR: This book introduces the basic concepts in the design and analysis of randomized algorithms and presents basic tools such as probability theory and probabilistic analysis that are frequently used in algorithmic applications.
Abstract: For many applications, a randomized algorithm is either the simplest or the fastest algorithm available, and sometimes both. This book introduces the basic concepts in the design and analysis of randomized algorithms. The first part of the text presents basic tools such as probability theory and probabilistic analysis that are frequently used in algorithmic applications. Algorithmic examples are also given to illustrate the use of each tool in a concrete setting. In the second part of the book, each chapter focuses on an important area to which randomized algorithms can be applied, providing a comprehensive and representative selection of the algorithms that might be used in each of these areas. Although written primarily as a text for advanced undergraduates and graduate students, this book should also prove invaluable as a reference for professionals and researchers.

4,412 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the asymptotic behavior of the cost of the solution returned by stochastic sampling-based path planning algorithms as the number of samples increases.
Abstract: During the last decade, sampling-based path planning algorithms, such as probabilistic roadmaps (PRM) and rapidly exploring random trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g. as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e.g. showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e. such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.

3,438 citations

Book ChapterDOI
03 Sep 2001
TL;DR: The goal of this paper is to provide an experimental comparison of the efficiency of min-cut/max flow algorithms for applications in vision, comparing the running times of several standard algorithms, as well as a new algorithm that is recently developed.
Abstract: After [10, 15, 12, 2, 4] minimum cut/maximum flow algorithms on graphs emerged as an increasingly useful tool for exact or approximate energy minimization in low-level vision. The combinatorial optimization literature provides many min-cut/max-flow algorithms with different polynomial time complexity. Their practical efficiency, however, has to date been studied mainly outside the scope of computer vision. The goal of this paper is to provide an experimental comparison of the efficiency of min-cut/max flow algorithms for energy minimization in vision. We compare the running times of several standard algorithms, as well as a new algorithm that we have recently developed. The algorithms we study include both Goldberg-style "push-relabel" methods and algorithms based on Ford-Fulkerson style augmenting paths. We benchmark these algorithms on a number of typical graphs in the contexts of image restoration, stereo, and interactive segmentation. In many cases our new algorithm works several times faster than any of the other methods making near real-time performance possible.

3,099 citations


Network Information
Related Topics (5)
Probabilistic logic
56K papers, 1.3M citations
89% related
Optimization problem
96.4K papers, 2.1M citations
85% related
Robustness (computer science)
94.7K papers, 1.6M citations
81% related
Markov chain
51.9K papers, 1.3M citations
78% related
Artificial neural network
207K papers, 4.5M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202329
202272
2021142
2020173
2019149
2018183