Topic

# Probabilistic encryption

About: Probabilistic encryption is a(n) research topic. Over the lifetime, 6419 publication(s) have been published within this topic receiving 208978 citation(s).

##### Papers

More filters

••

19 Aug 2001-

TL;DR: This work proposes a fully functional identity-based encryption scheme (IBE) based on the Weil pairing that has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational Diffie-Hellman problem.

Abstract: We propose a fully functional identity-based encryption scheme (IBE). The scheme has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational Diffie-Hellman problem. Our system is based on the Weil pairing. We give precise definitions for secure identity based encryption schemes and give several applications for such systems.

6,596 citations

••

02 May 1999-

TL;DR: A new trapdoor mechanism is proposed and three encryption schemes are derived : a trapdoor permutation and two homomorphic probabilistic encryption schemes computationally comparable to RSA, which are provably secure under appropriate assumptions in the standard model.

Abstract: This paper investigates a novel computational problem, namely the Composite Residuosity Class Problem, and its applications to public-key cryptography. We propose a new trapdoor mechanism and derive from this technique three encryption schemes : a trapdoor permutation and two homomorphic probabilistic encryption schemes computationally comparable to RSA. Our cryptosystems, based on usual modular arithmetics, are provably secure under appropriate assumptions in the standard model.

6,049 citations

••

31 May 2009-

TL;DR: This work proposes a fully homomorphic encryption scheme that allows one to evaluate circuits over encrypted data without being able to decrypt, and describes a public key encryption scheme using ideal lattices that is almost bootstrappable.

Abstract: We propose a fully homomorphic encryption scheme -- i.e., a scheme that allows one to evaluate circuits over encrypted data without being able to decrypt. Our solution comes in three steps. First, we provide a general result -- that, to construct an encryption scheme that permits evaluation of arbitrary circuits, it suffices to construct an encryption scheme that can evaluate (slightly augmented versions of) its own decryption circuit; we call a scheme that can evaluate its (augmented) decryption circuit bootstrappable.Next, we describe a public key encryption scheme using ideal lattices that is almost bootstrappable.Lattice-based cryptosystems typically have decryption algorithms with low circuit complexity, often dominated by an inner product computation that is in NC1. Also, ideal lattices provide both additive and multiplicative homomorphisms (modulo a public-key ideal in a polynomial ring that is represented as a lattice), as needed to evaluate general circuits.Unfortunately, our initial scheme is not quite bootstrappable -- i.e., the depth that the scheme can correctly evaluate can be logarithmic in the lattice dimension, just like the depth of the decryption circuit, but the latter is greater than the former. In the final step, we show how to modify the scheme to reduce the depth of the decryption circuit, and thereby obtain a bootstrappable encryption scheme, without reducing the depth that the scheme can evaluate. Abstractly, we accomplish this by enabling the encrypter to start the decryption process, leaving less work for the decrypter, much like the server leaves less work for the decrypter in a server-aided cryptosystem.

4,940 citations

••

30 Oct 2006-

TL;DR: This work develops a new cryptosystem for fine-grained sharing of encrypted data that is compatible with Hierarchical Identity-Based Encryption (HIBE), and demonstrates the applicability of the construction to sharing of audit-log information and broadcast encryption.

Abstract: As more sensitive data is shared and stored by third-party sites on the Internet, there will be a need to encrypt data stored at these sites. One drawback of encrypting data, is that it can be selectively shared only at a coarse-grained level (i.e., giving another party your private key). We develop a new cryptosystem for fine-grained sharing of encrypted data that we call Key-Policy Attribute-Based Encryption (KP-ABE). In our cryptosystem, ciphertexts are labeled with sets of attributes and private keys are associated with access structures that control which ciphertexts a user is able to decrypt. We demonstrate the applicability of our construction to sharing of audit-log information and broadcast encryption. Our construction supports delegation of private keys which subsumesHierarchical Identity-Based Encryption (HIBE).

3,765 citations

••

PARC

^{1}TL;DR: Use of encryption to achieve authenticated communication in computer networks is discussed and example protocols are presented for the establishment of authenticated connections, for the management of authenticated mail, and for signature verification and document integrity guarantee.

Abstract: Use of encryption to achieve authenticated communication in computer networks is discussed. Example protocols are presented for the establishment of authenticated connections, for the management of authenticated mail, and for signature verification and document integrity guarantee. Both conventional and public-key encryption algorithms are considered as the basis for protocols.

2,622 citations