scispace - formally typeset
Search or ask a question
Topic

Probabilistic latent semantic analysis

About: Probabilistic latent semantic analysis is a research topic. Over the lifetime, 2884 publications have been published within this topic receiving 198341 citations. The topic is also known as: PLSA.


Papers
More filters
Proceedings ArticleDOI
03 Jul 2014
TL;DR: A novel Latent Semantic Sparse Hashing (LSSH) is proposed to perform cross-modal similarity search by employing Sparse Coding and Matrix Factorization to capture the salient structures of images and learn the latent concepts from text.
Abstract: Similarity search methods based on hashing for effective and efficient cross-modal retrieval on large-scale multimedia databases with massive text and images have attracted considerable attention. The core problem of cross-modal hashing is how to effectively construct correlation between multi-modal representations which are heterogeneous intrinsically in the process of hash function learning. Analogous to Canonical Correlation Analysis (CCA), most existing cross-modal hash methods embed the heterogeneous data into a joint abstraction space by linear projections. However, these methods fail to bridge the semantic gap more effectively, and capture high-level latent semantic information which has been proved that it can lead to better performance for image retrieval. To address these challenges, in this paper, we propose a novel Latent Semantic Sparse Hashing (LSSH) to perform cross-modal similarity search by employing Sparse Coding and Matrix Factorization. In particular, LSSH uses Sparse Coding to capture the salient structures of images, and Matrix Factorization to learn the latent concepts from text. Then the learned latent semantic features are mapped to a joint abstraction space. Moreover, an iterative strategy is applied to derive optimal solutions efficiently, and it helps LSSH to explore the correlation between multi-modal representations efficiently and automatically. Finally, the unified hashcodes are generated through the high level abstraction space by quantization. Extensive experiments on three different datasets highlight the advantage of our method under cross-modal scenarios and show that LSSH significantly outperforms several state-of-the-art methods.

384 citations

Proceedings Article
05 Dec 2005
TL;DR: In this paper, the authors generalize a successful static model of relationships into a dynamic model that accounts for friendships drifting over time, and show how to make it tractable to learn such models from data, even as the number of entities n gets large.
Abstract: This paper explores two aspects of social network modeling. First, we generalize a successful static model of relationships into a dynamic model that accounts for friendships drifting over time. Second, we show how to make it tractable to learn such models from data, even as the number of entities n gets large. The generalized model associates each entity with a point in p-dimensional Euclidian latent space. The points can move as time progresses but large moves in latent space are improbable. Observed links between entities are more likely if the entities are close in latent space. We show how to make such a model tractable (sub-quadratic in the number of entities) by the use of appropriate kernel functions for similarity in latent space; the use of low dimensional kd-trees; a new efficient dynamic adaptation of multidimensional scaling for a first pass of approximate projection of entities into latent space; and an efficient conjugate gradient update rule for non-linear local optimization in which amortized time per entity during an update is O(log n). We use both synthetic and real-world data on upto 11,000 entities which indicate linear scaling in computation time and improved performance over four alternative approaches. We also illustrate the system operating on twelve years of NIPS co-publication data. We present a detailed version of this work in [1].

364 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: A novel Latent Multi-view Subspace Clustering method, which clusters data points with latent representation and simultaneously explores underlying complementary information from multiple views, which makes subspace representation more accurate and robust as well.
Abstract: In this paper, we propose a novel Latent Multi-view Subspace Clustering (LMSC) method, which clusters data points with latent representation and simultaneously explores underlying complementary information from multiple views. Unlike most existing single view subspace clustering methods that reconstruct data points using original features, our method seeks the underlying latent representation and simultaneously performs data reconstruction based on the learned latent representation. With the complementarity of multiple views, the latent representation could depict data themselves more comprehensively than each single view individually, accordingly makes subspace representation more accurate and robust as well. The proposed method is intuitive and can be optimized efficiently by using the Augmented Lagrangian Multiplier with Alternating Direction Minimization (ALM-ADM) algorithm. Extensive experiments on benchmark datasets have validated the effectiveness of our proposed method.

357 citations

Proceedings Article
31 Mar 2010
TL;DR: In this article, a variational inference framework for training the Gaussian process latent variable model and thus performing Bayesian nonlinear dimensionality reduction is introduced, which can automatically select the dimensionality of the nonlinear latent space.
Abstract: We introduce a variational inference framework for training the Gaussian process latent variable model and thus performing Bayesian nonlinear dimensionality reduction. This method allows us to variationally integrate out the input variables of the Gaussian process and compute a lower bound on the exact marginal likelihood of the nonlinear latent variable model. The maximization of the variational lower bound provides a Bayesian training procedure that is robust to overfitting and can automatically select the dimensionality of the nonlinear latent space. We demonstrate our method on real world datasets. The focus in this paper is on dimensionality reduction problems, but the methodology is more general. For example, our algorithm is immediately applicable for training Gaussian process models in the presence of missing or uncertain inputs.

338 citations

Patent
14 Apr 2004
TL;DR: In this paper, a trainable semantic vector (TSV) is constructed to represent the significance of the information relative to each of the predetermined categories, and various types of manipulation and analysis such as searching, classification, and clustering can subsequently be performed on a semantic level.
Abstract: An apparatus and method are disclosed for producing a semantic representation of information in a semantic space. The information is first represented in a table that stores values which indicate a relationship with predetermined categories. The categories correspond to dimensions in the semantic space. The significance of the information with respect to the predetermined categories is then determined. A trainable semantic vector (TSV) is constructed to provide a semantic representation of the information. The TSV has dimensions equal to the number of predetermined categories and represents the significance of the information relative to each of the predetermined categories. Various types of manipulation and analysis, such as searching, classification, and clustering, can subsequently be performed on a semantic level.

326 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
84% related
Feature (computer vision)
128.2K papers, 1.7M citations
84% related
Support vector machine
73.6K papers, 1.7M citations
84% related
Deep learning
79.8K papers, 2.1M citations
83% related
Object detection
46.1K papers, 1.3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202319
202277
202114
202036
201927
201858