scispace - formally typeset
Search or ask a question
Topic

Probabilistic latent semantic analysis

About: Probabilistic latent semantic analysis is a research topic. Over the lifetime, 2884 publications have been published within this topic receiving 198341 citations. The topic is also known as: PLSA.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel unsupervised learning method for human action categories that can recognize and localize multiple actions in long and complex video sequences containing multiple motions.
Abstract: We present a novel unsupervised learning method for human action categories. A video sequence is represented as a collection of spatial-temporal words by extracting space-time interest points. The algorithm automatically learns the probability distributions of the spatial-temporal words and the intermediate topics corresponding to human action categories. This is achieved by using latent topic models such as the probabilistic Latent Semantic Analysis (pLSA) model and Latent Dirichlet Allocation (LDA). Our approach can handle noisy feature points arisen from dynamic background and moving cameras due to the application of the probabilistic models. Given a novel video sequence, the algorithm can categorize and localize the human action(s) contained in the video. We test our algorithm on three challenging datasets: the KTH human motion dataset, the Weizmann human action dataset, and a recent dataset of figure skating actions. Our results reflect the promise of such a simple approach. In addition, our algorithm can recognize and localize multiple actions in long and complex video sequences containing multiple motions.

1,440 citations

Journal ArticleDOI
TL;DR: This manuscript discusses a typology of (second-order) hierarchical latent variable models that include formative relationships, and provides an overview of different approaches that can be used to estimate the parameters in these models.

1,361 citations

Proceedings ArticleDOI
01 May 1998
TL;DR: It is proved that under certain conditions LSI does succeed in capturing the underlying semantics of the corpus and achieves improved retrieval performance.
Abstract: Latent semantic indexing LSI is an information retrieval technique based on the spectral analysis of the term document matrix whose empirical success had heretofore been without rigorous prediction and explanation We prove that under certain conditions LSI does succeed in capturing the underlying semantics of the corpus and achieves improved retrieval performance We also propose the technique of random projection as a way of speeding up LSI We complement our theorems with encouraging experimental results We also argue that our results may be viewed in a more general framework as a theoretical basis for the use of spectral methods in a wider class of applications such as collaborative ltering

1,235 citations

Proceedings ArticleDOI
28 Jul 2003
TL;DR: Three hierarchical probabilistic mixture models which aim to describe annotated data with multiple types, culminating in correspondence latent Dirichlet allocation, a latent variable model that is effective at modeling the joint distribution of both types and the conditional distribution of the annotation given the primary type.
Abstract: We consider the problem of modeling annotated data---data with multiple types where the instance of one type (such as a caption) serves as a description of the other type (such as an image). We describe three hierarchical probabilistic mixture models which aim to describe such data, culminating in correspondence latent Dirichlet allocation, a latent variable model that is effective at modeling the joint distribution of both types and the conditional distribution of the annotation given the primary type. We conduct experiments on the Corel database of images and captions, assessing performance in terms of held-out likelihood, automatic annotation, and text-based image retrieval.

1,199 citations

Proceedings ArticleDOI
17 Oct 2005
TL;DR: This work treats object categories as topics, so that an image containing instances of several categories is modeled as a mixture of topics, and develops a model developed in the statistical text literature: probabilistic latent semantic analysis (pLSA).
Abstract: We seek to discover the object categories depicted in a set of unlabelled images. We achieve this using a model developed in the statistical text literature: probabilistic latent semantic analysis (pLSA). In text analysis, this is used to discover topics in a corpus using the bag-of-words document representation. Here we treat object categories as topics, so that an image containing instances of several categories is modeled as a mixture of topics. The model is applied to images by using a visual analogue of a word, formed by vector quantizing SIFT-like region descriptors. The topic discovery approach successfully translates to the visual domain: for a small set of objects, we show that both the object categories and their approximate spatial layout are found without supervision. Performance of this unsupervised method is compared to the supervised approach of Fergus et al. (2003) on a set of unseen images containing only one object per image. We also extend the bag-of-words vocabulary to include 'doublets' which encode spatially local co-occurring regions. It is demonstrated that this extended vocabulary gives a cleaner image segmentation. Finally, the classification and segmentation methods are applied to a set of images containing multiple objects per image. These results demonstrate that we can successfully build object class models from an unsupervised analysis of images.

1,129 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
84% related
Feature (computer vision)
128.2K papers, 1.7M citations
84% related
Support vector machine
73.6K papers, 1.7M citations
84% related
Deep learning
79.8K papers, 2.1M citations
83% related
Object detection
46.1K papers, 1.3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202319
202277
202114
202036
201927
201858