scispace - formally typeset
Search or ask a question
Topic

Probabilistic roadmap

About: Probabilistic roadmap is a research topic. Over the lifetime, 621 publications have been published within this topic receiving 49430 citations.


Papers
More filters
Book
01 Jan 1990
TL;DR: This chapter discusses the configuration space of a Rigid Object, the challenges of dealing with uncertainty, and potential field methods for solving these problems.
Abstract: 1 Introduction and Overview.- 2 Configuration Space of a Rigid Object.- 3 Obstacles in Configuration Space.- 4 Roadmap Methods.- 5 Exact Cell Decomposition.- 6 Approximate Cell Decomposition.- 7 Potential Field Methods.- 8 Multiple Moving Objects.- 9 Kinematic Constraints.- 10 Dealing with Uncertainty.- 11 Movable Objects.- Prospects.- Appendix A Basic Mathematics.- Appendix B Computational Complexity.- Appendix C Graph Searching.- Appendix D Sweep-Line Algorithm.- References.

6,186 citations

Journal ArticleDOI
01 Aug 1996
TL;DR: Experimental results show that path planning can be done in a fraction of a second on a contemporary workstation (/spl ap/150 MIPS), after learning for relatively short periods of time (a few dozen seconds).
Abstract: A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collision-free configurations and whose edges correspond to feasible paths between these configurations. These paths are computed using a simple and fast local planner. In the query phase, any given start and goal configurations of the robot are connected to two nodes of the roadmap; the roadmap is then searched for a path joining these two nodes. The method is general and easy to implement. It can be applied to virtually any type of holonomic robot. It requires selecting certain parameters (e.g., the duration of the learning phase) whose values depend on the scene, that is the robot and its workspace. But these values turn out to be relatively easy to choose, Increased efficiency can also be achieved by tailoring some components of the method (e.g., the local planner) to the considered robots. In this paper the method is applied to planar articulated robots with many degrees of freedom. Experimental results show that path planning can be done in a fraction of a second on a contemporary workstation (/spl ap/150 MIPS), after learning for relatively short periods of time (a few dozen seconds).

4,977 citations

Book
01 Jan 2006

4,417 citations

Journal Article
TL;DR: The Rapidly-exploring Random Tree (RRT) as discussed by the authors is a data structure designed for path planning problems with high degrees of freedom and non-holonomic constraints, including dynamics.
Abstract: We introduce the concept of a Rapidly-exploring Random Tree (RRT) as a randomized data structure that is designed for a broad class of path planning problems. While they share many of the bene cial properties of existing randomized planning techniques, RRTs are specifically designed to handle nonholonomic constraints (including dynamics) and high degrees of freedom. An RRT is iteratively expanded by applying control inputs that drive the system slightly toward randomly-selected points, as opposed to requiring point-to-point convergence, as in the probabilistic roadmap approach. Several desirable properties and a basic implementation of RRTs are discussed. To date, we have successfully applied RRTs to holonomic, nonholonomic, and kinodynamic planning problems of up to twelve degrees of freedom.

3,474 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the asymptotic behavior of the cost of the solution returned by stochastic sampling-based path planning algorithms as the number of samples increases.
Abstract: During the last decade, sampling-based path planning algorithms, such as probabilistic roadmaps (PRM) and rapidly exploring random trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g. as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e.g. showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e. such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.

3,438 citations


Network Information
Related Topics (5)
Robot
103.8K papers, 1.3M citations
87% related
Object detection
46.1K papers, 1.3M citations
78% related
Adaptive control
60.1K papers, 1.2M citations
77% related
Robustness (computer science)
94.7K papers, 1.6M citations
77% related
Control theory
299.6K papers, 3.1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202315
202243
202124
202031
201927
201832