scispace - formally typeset
Search or ask a question
Topic

Probability density function

About: Probability density function is a research topic. Over the lifetime, 22321 publications have been published within this topic receiving 422885 citations. The topic is also known as: probability function & PDF.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed shape description framework characterizes a 3D object with sampled multivariate probability density functions of its local surface features with a density-based descriptor which can be efficiently computed via kernel density estimation (KDE) coupled with fast Gauss transform.
Abstract: We address content-based retrieval of complete 3D object models by a probabilistic generative description of local shape properties. The proposed shape description framework characterizes a 3D object with sampled multivariate probability density functions of its local surface features. This density-based descriptor can be efficiently computed via kernel density estimation (KDE) coupled with fast Gauss transform. The non-parametric KDE technique allows reliable characterization of a diverse set of shapes and yields descriptors which remain relatively insensitive to small shape perturbations and mesh resolution. Density-based characterization also induces a permutation property which can be used to guarantee invariance at the shape matching stage. As proven by extensive retrieval experiments on several 3D databases, our framework provides state-of-the-art discrimination over a broad and heterogeneous set of shape categories.

123 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss a family of distributions which would seem not to receive proper attention in the literature, including the triangular distribution, the standard power function distribution, and the uniform distribution.
Abstract: This article discusses a family of distributions which would seem not to receive proper attention in the literature. The two-parameter distribution is introduced with an application in the financial engineering domain. Special cases of this family include the triangular distribution, the standard power function distribution, and the uniform distribution. Properties of the distribution are investigated and the maximum likelihood estimation procedure for its two parameters is derived. The flexibility of the family as compared to that of the beta family is discussed.

123 citations

Posted Content
TL;DR: A novel and simple closed-form approximation for the distribution of the sum of independent, but not necessarily identically distributed Γ Γ variates is presented and it is shown that the probability density function of the Γ â‚¬ sum can be efficiently approximated either by the PDF of a single Γ Г distribution, or by a finite weighted sum of PDFs of ΓΓ distributions.
Abstract: The Gamma-Gamma (GG) distribution has recently attracted the interest within the research community due to its involvement in various communication systems. In the context of RF wireless communications, GG distribution accurately models the power statistics in composite shadowing/fading channels as well as in cascade multipath fading channels, while in optical wireless (OW) systems, it describes the fluctuations of the irradiance of optical signals distorted by atmospheric turbulence. Although GG channel model offers analytical tractability in the analysis of single input single output (SISO) wireless systems, difficulties arise when studying multiple input multiple output (MIMO) systems, where the distribution of the sum of independent GG variates is required. In this paper, we present a novel simple closed-form approximation for the distribution of the sum of independent, but not necessarily identically distributed GG variates. It is shown that the probability density function (PDF) of the GG sum can be efficiently approximated either by the PDF of a single GG distribution, or by a finite weighted sum of PDFs of GG distributions. To reveal the importance of the proposed approximation, the performance of RF wireless systems in the presence of composite fading, as well as MIMO OW systems impaired by atmospheric turbulence, are investigated. Numerical results and simulations illustrate the accuracy of the proposed approach.

123 citations

Journal ArticleDOI
TL;DR: In this paper, a model for earthquakes induced by subsurface reservoir volume changes is developed for the Groningen gas field, which is based on the work of Kostrov and McGarr.
Abstract: A seismological model is developed for earthquakes induced by subsurface reservoir volume changes. The approach is based on the work of Kostrov (1974) and McGarr (1976) linking total strain to the summed seismic moment in an earthquake catalog. We refer to the fraction of the total strain expressed as seismic moment as the strain partitioning function, α. A probability distribution for total seismic moment as a function of time is derived from an evolving earthquake catalog. The moment distribution is taken to be a Pareto Sum Distribution with confidence bounds estimated using approximations given by Zaliapin et al. (2005). In this way available seismic moment is expressed in terms of reservoir volume change and hence compaction in the case of a depleting reservoir. The Pareto Sum Distribution for moment and the Pareto Distribution underpinning the Gutenberg-Richter Law are sampled using Monte Carlo methods to simulate synthetic earthquake catalogs for subsequent estimation of seismic ground motion hazard. We demonstrate the method by applying it to the Groningen gas field. A compaction model for the field calibrated using various geodetic data allows reservoir strain due to gas extraction to be expressed as a function of both spatial position and time since the start of production. Fitting with a generalized logistic function gives an empirical expression for the dependence of α on reservoir compaction. Probability density maps for earthquake event locations can then be calculated from the compaction maps. Predicted seismic moment is shown to be strongly dependent on planned gas production.

123 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the influence of uncertainties on the choice of a window function on the power spectrum required for LIGO primordial black holes (PBHs).
Abstract: Primordial black holes (PBHs) can be produced by the perturbations that exit the horizon during the inflationary phase. While inflation models predict the power spectrum of the perturbations in Fourier space, the PBH abundance depends on the probability distribution function of density perturbations in real space. To estimate the PBH abundance in a given inflation model, we must relate the power spectrum in Fourier space to the probability density function in real space by coarse graining the perturbations with a window function. However, there are uncertainties on what window function should be used, which could change the relation between the PBH abundance and the power spectrum. This is particularly important in considering PBHs with mass $30\text{ }\text{ }{M}_{\ensuremath{\bigodot}}$, which account for the LIGO events because the required power spectrum is severely constrained by the observations. In this paper, we investigate how large an influence the uncertainties on the choice of a window function has over the power spectrum required for LIGO PBHs. As a result, it is found that the uncertainties significantly affect the prediction for the stochastic gravitational waves induced by the second-order effect of the perturbations. In particular, the pulsar timing array constraints on the produced gravitational waves could disappear for the real-space top-hat window function.

123 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
88% related
Monte Carlo method
95.9K papers, 2.1M citations
87% related
Estimator
97.3K papers, 2.6M citations
86% related
Optimization problem
96.4K papers, 2.1M citations
85% related
Artificial neural network
207K papers, 4.5M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023382
2022906
2021906
20201,047
20191,117
20181,083