scispace - formally typeset
Search or ask a question
Topic

Progenitor cell

About: Progenitor cell is a research topic. Over the lifetime, 50800 publications have been published within this topic receiving 2535040 citations.


Papers
More filters
Journal ArticleDOI
01 Nov 2001-Nature
TL;DR: Stem cell biology has come of age: Unequivocal proof that stem cells exist in the haematopoietic system has given way to the prospective isolation of several tissue-specific stem and progenitor cells, the initial delineation of their properties and expressed genetic programmes, and the beginnings of their utility in regenerative medicine.
Abstract: Stem cell biology has come of age. Unequivocal proof that stem cells exist in the haematopoietic system has given way to the prospective isolation of several tissue-specific stem and progenitor cells, the initial delineation of their properties and expressed genetic programmes, and the beginnings of their utility in regenerative medicine. Perhaps the most important and useful property of stem cells is that of self-renewal. Through this property, striking parallels can be found between stem cells and cancer cells: tumours may often originate from the transformation of normal stem cells, similar signalling pathways may regulate self-renewal in stem cells and cancer cells, and cancer cells may include 'cancer stem cells' - rare cells with indefinite potential for self-renewal that drive tumorigenesis.

8,999 citations

Journal ArticleDOI
14 Feb 1997-Science
TL;DR: It is suggested that EC progenitors may be useful for augmenting collateral vessel growth to ischemic tissues (therapeutic angiogenesis) and for delivering anti- or pro-angiogenic agents, respectively, to sites of pathologic or utilitarianAngiogenesis.
Abstract: Putative endothelial cell (EC) progenitors or angioblasts were isolated from human peripheral blood by magnetic bead selection on the basis of cell surface antigen expression In vitro, these cells differentiated into ECs In animal models of ischemia, heterologous, homologous, and autologous EC progenitors incorporated into sites of active angiogenesis These findings suggest that EC progenitors may be useful for augmenting collateral vessel growth to ischemic tissues (therapeutic angiogenesis) and for delivering anti- or pro-angiogenic agents, respectively, to sites of pathologic or utilitarian angiogenesis

8,598 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the cell capable of initiating human AML in non-obese diabetic mice with severe combined immunodeficiency disease (NOD/SCID mice) — termed the SCID leukemia-initiating cell, or SL-IC — possesses the differentiate and proliferative capacities and the potential for self-renewal expected of a leukemic stem cell.
Abstract: On the subject of acute myeloid leukemia (AML), there is little consensus about the target cell within the hematopoietic stem cell hierarchy that is susceptible to leukemic transformation, or about the mechanism that underlies the phenotypic, genotypic and clinical heterogeneity. Here we demonstrate that the cell capable of initiating human AML in non-obese diabetic mice with severe combined immunodeficiency disease (NOD/SCID mice) - termed the SCID leukemia-initiating cell, or SL-IC - possesses the differentiative and proliferative capacities and the potential for self-renewal expected of a leukemic stem cell. The SL-ICs from all subtypes of AML analyzed, regardless of the heterogeneity in maturation characteristics of the leukemic blasts, were exclusively CD34++ CD38-, similar to the cell-surface phenotype of normal SCID-repopulating cells, suggesting that normal primitive cells, rather than committed progenitor cells, are the target for leukemic transformation. The SL-ICs were able to differentiate in vivo into leukemic blasts, indicating that the leukemic clone is organized as a hierarchy.

6,709 citations

Journal ArticleDOI
04 Jul 2002-Nature
TL;DR: It is reported here that cells co-purifying with mesenchymal stem cells—termed here multipotent adult progenitor cells or MAPCs—differentiate, at the single cell level, not only into meschymal cells, but also cells with visceral mesoderm, neuroectoderm and endoderm characteristics in vitro.
Abstract: We report here that cells co-purifying with mesenchymal stem cells--termed here multipotent adult progenitor cells or MAPCs--differentiate, at the single cell level, not only into mesenchymal cells, but also cells with visceral mesoderm, neuroectoderm and endoderm characteristics in vitro. When injected into an early blastocyst, single MAPCs contribute to most, if not all, somatic cell types. On transplantation into a non-irradiated host, MAPCs engraft and differentiate to the haematopoietic lineage, in addition to the epithelium of liver, lung and gut. Engraftment in the haematopoietic system as well as the gastrointestinal tract is increased when MAPCs are transplanted in a minimally irradiated host. As MAPCs proliferate extensively without obvious senescence or loss of differentiation potential, they may be an ideal cell source for therapy of inherited or degenerative diseases.

5,475 citations

Journal ArticleDOI
17 Feb 1994-Nature
TL;DR: This in vivo model replicates many aspects of human AML and defines a new leukaemia-initiating cell which is less mature than colony-forming cells.
Abstract: Most human acute myeloid leukaemia (AML) cells have limited proliferative capacity, suggesting that the leukaemic clone may be maintained by a rare population of stem cells. This putative leukaemic stem cell has not been characterized because the available in vitro assays can only detect progenitors with limited proliferative and replating potential. We have now identified an AML-initiating cell by transplantation into severe combined immune-deficient (SCID) mice. These cells homed to the bone marrow and proliferated extensively in response to in vivo cytokine treatment, resulting in a pattern of dissemination and leukaemic cell morphology similar to that seen in the original patients. Limiting dilution analysis showed that the frequency of these leukaemia-initiating cells in the peripheral blood of AML patients was one engraftment unit in 250,000 cells. We fractionated AML cells on the basis of cell-surface-marker expression and found that the leukaemia-initiating cells that could engraft SCID mice to produce large numbers of colony-forming progenitors were CD34+ CD38-; however, the CD34+ CD38+ and CD34- fractions contained no cells with these properties. This in vivo model replicates many aspects of human AML and defines a new leukaemia-initiating cell which is less mature than colony-forming cells.

4,597 citations


Network Information
Related Topics (5)
Stem cell
129.1K papers, 5.9M citations
97% related
Cellular differentiation
90.9K papers, 6M citations
94% related
Signal transduction
122.6K papers, 8.2M citations
90% related
Transcription factor
82.8K papers, 5.4M citations
87% related
T cell
109.5K papers, 5.5M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,144
20223,284
20211,970
20202,128
20192,092
20182,030