scispace - formally typeset
Search or ask a question
Topic

Program transformation

About: Program transformation is a research topic. Over the lifetime, 2468 publications have been published within this topic receiving 73415 citations.


Papers
More filters
Book ChapterDOI
14 Jun 1999
TL;DR: An analysis of why certain design decisions have been so difficult to clearly capture in actual code is presented, and the basis for a new programming technique, called aspect-oriented programming, that makes it possible to clearly express programs involving such aspects.
Abstract: We have found many programming problems for which neither procedural nor object-oriented programming techniques are sufficient to clearly capture some of the important design decisions the program must implement. This forces the implementation of those design decisions to be scattered throughout the code, resulting in “tangled” code that is excessively difficult to develop and maintain. We present an analysis of why certain design decisions have been so difficult to clearly capture in actual code. We call the properties these decisions address aspects, and show that the reason they have been hard to capture is that they cross-cut the system's basic functionality. We present the basis for a new programming technique, called aspect-oriented programming, that makes it possible to clearly express programs involving such aspects, including appropriate isolation, composition and reuse of the aspect code. The discussion is rooted in systems we have built using aspect-oriented programming.

3,355 citations

Journal ArticleDOI
J. W. Backus1
TL;DR: A new class of computing systems uses the functional programming style both in its programming language and in its state transition rules; these systems have semantics loosely coupled to states—only one state transition occurs per major computation.
Abstract: Conventional programming languages are growing ever more enormous, but not stronger. Inherent defects at the most basic level cause them to be both fat and weak: their primitive word-at-a-time style of programming inherited from their common ancestor—the von Neumann computer, their close coupling of semantics to state transitions, their division of programming into a world of expressions and a world of statements, their inability to effectively use powerful combining forms for building new programs from existing ones, and their lack of useful mathematical properties for reasoning about programs.An alternative functional style of programming is founded on the use of combining forms for creating programs. Functional programs deal with structured data, are often nonrepetitive and nonrecursive, are hierarchically constructed, do not name their arguments, and do not require the complex machinery of procedure declarations to become generally applicable. Combining forms can use high level programs to build still higher level ones in a style not possible in conventional languages.Associated with the functional style of programming is an algebra of programs whose variables range over programs and whose operations are combining forms. This algebra can be used to transform programs and to solve equations whose “unknowns” are programs in much the same way one transforms equations in high school algebra. These transformations are given by algebraic laws and are carried out in the same language in which programs are written. Combining forms are chosen not only for their programming power but also for the power of their associated algebraic laws. General theorems of the algebra give the detailed behavior and termination conditions for large classes of programs.A new class of computing systems uses the functional programming style both in its programming language and in its state transition rules. Unlike von Neumann languages, these systems have semantics loosely coupled to states—only one state transition occurs per major computation.

2,651 citations

Journal ArticleDOI
TL;DR: An intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependences for each operation in a program, allowing transformations to be triggered by one another and applied only to affected dependences.
Abstract: In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependences for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program. Control dependences are introduced to analogously represent only the essential control flow relationships of a program. Control dependences are derived from the usual control flow graph. Many traditional optimizations operate more efficiently on the PDG. Since dependences in the PDG connect computationally related parts of the program, a single walk of these dependences is sufficient to perform many optimizations. The PDG allows transformations such as vectorization, that previously required special treatment of control dependence, to be performed in a manner that is uniform for both control and data dependences. Program transformations that require interaction of the two dependence types can also be easily handled with our representation. As an example, an incremental approach to modifying data dependences resulting from branch deletion or loop unrolling is introduced. The PDG supports incremental optimization, permitting transformations to be triggered by one another and applied only to affected dependences.

2,631 citations

Journal ArticleDOI
TL;DR: In this article, the authors present new algorithms that efficiently compute static single assignment forms and control dependence graphs for arbitrary control flow graphs using the concept of {\em dominance frontiers} and give analytical and experimental evidence that these data structures are usually linear in the size of the original program.
Abstract: In optimizing compilers, data structure choices directly influence the power and efficiency of practical program optimization. A poor choice of data structure can inhibit optimization or slow compilation to the point that advanced optimization features become undesirable. Recently, static single assignment form and the control dependence graph have been proposed to represent data flow and control flow properties of programs. Each of these previously unrelated techniques lends efficiency and power to a useful class of program optimizations. Although both of these structures are attractive, the difficulty of their construction and their potential size have discouraged their use. We present new algorithms that efficiently compute these data structures for arbitrary control flow graphs. The algorithms use {\em dominance frontiers}, a new concept that may have other applications. We also give analytical and experimental evidence that all of these data structures are usually linear in the size of the original program. This paper thus presents strong evidence that these structures can be of practical use in optimization.

2,198 citations

Book
01 Jan 1993
TL;DR: This paper presents a guide to the literature the self-applicable scheme specializer, a partial evaluator for a subset of scheme for a first-order functional languages.
Abstract: Functions, types and expressions programming languages and their operational semantics compilation partial evaluation of a flow chart languages partial evaluation of a first-order functional languages the view from Olympus partial evaluation of the Lambda calculus partial evaluation of prolog aspects of Similix - a partial evaluator for a subset of scheme partial evaluation of C applications of partial evaluation termination of partial evaluation program analysis more general program transformation guide to the literature the self-applicable scheme specializer.

1,549 citations


Network Information
Related Topics (5)
Model checking
16.9K papers, 451.6K citations
92% related
Compiler
26.3K papers, 578.5K citations
88% related
Programming paradigm
18.7K papers, 467.9K citations
87% related
Executable
24K papers, 391.1K citations
86% related
Component-based software engineering
24.2K papers, 461.9K citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20234
202218
202126
202042
201956
201836