scispace - formally typeset
Search or ask a question
Topic

Projection method

About: Projection method is a research topic. Over the lifetime, 3685 publications have been published within this topic receiving 85244 citations.


Papers
More filters
01 Nov 2002
TL;DR: An accurate and efficient numerical method to solve the coupled Cahn-Hilliard/Navier-Stokes system, known as Model H, that constitutes a phase field model for density-matched binary fluids with variable mobility and viscosity, and solves the Navier- Stokes equations with a robust time-discretization of the projection method that guarantees better stability properties than those for Crank-Nicolson-based projection methods.
Abstract: Phase field models offer a systematic physical approach for investigating complex multiphase systems behaviors such as near-critical interfacial phenomena, phase separation under shear, and microstructure evolution during solidification. However, because interfaces are replaced by thin transition regions (diffuse interfaces), phase field simulations require resolution of very thin layers to capture the physics of the problems studied. This demands robust numerical methods that can efficiently achieve high resolution and accuracy, especially in three dimensions. We present here an accurate and efficient numerical method to solve the coupled Cahn-Hilliard/Navier-Stokes system, known as Model H, that constitutes a phase field model for density-matched binary fluids with variable mobility and viscosity. The numerical method is a time-split scheme that combines a novel semi-implicit discretization for the convective Cahn-Hilliard equation with an innovative application of high-resolution schemes employed for direct numerical simulations of turbulence. This new semi-implicit discretization is simple but effective since it removes the stability constraint due to the nonlinearity of the Cahn-Hilliard equation at the same cost as that of an explicit scheme. It is derived from a discretization used for diffusive problems that we further enhance to efficiently solve flow problems with variable mobility and viscosity. Moreover, we solve the Navier-Stokes equations with a robust time-discretization of the projection method that guarantees better stability properties than those for Crank-Nicolson-based projection methods. For channel geometries, the method uses a spectral discretization in the streamwise and spanwise directions and a combination of spectral and high order compact finite difference discretizations in the wall normal direction. The capabilities of the method are demonstrated with several examples including phase separation with, and without, shear in two and three dimensions. The method effectively resolves interfacial layers of as few as three mesh points. The numerical examples show agreement with analytical solutions and scaling laws, where available, and the 3D simulations, in the presence of shear, reveal rich and complex structures, including strings.

456 citations

Journal ArticleDOI
02 May 1993
TL;DR: It is shown in this paper that one fixed value of the scalar coefficient is not suitable even in a small workspace, and the proposed manipulation scheme automatically chooses an appropriate magnitude of the self-motion throughout the workspace.
Abstract: It is proposed to use weighted least-norm solution to avoid joint limits for redundant joint manipulators. A comparison is made with the gradient projection method for avoiding joint limits. While the gradient projection method provides the optimal direction for the joint velocity vector within the null space, its magnitude is not unique and is adjusted by a scalar coefficient chosen by trial and error. It is shown in this paper that one fixed value of the scalar coefficient is not suitable even in a small workspace. The proposed manipulation scheme automatically chooses an appropriate magnitude of the self-motion throughout the workspace. This scheme, unlike the gradient projection method, guarantees joint limit avoidance, and also minimizes unnecessary self-motion. It was implemented and tested for real-time control of a seven-degree-of-freedom (7-DOF) Robotics Research Corporation (RRC) manipulator. >

448 citations

Journal ArticleDOI
01 Jan 2004
TL;DR: The effectiveness of the MPE method is demonstrated by applying it to a nonlinear computational fluid dynamic model of an industrial glass furnace and the Galerkin projection can be computed using only 25% of the spatial grid points without compromising the accuracy of the reduced model.
Abstract: This paper presents a new method of missing point estimation (MPE) to derive efficient reduced-order models for large-scale parameter-varying systems. Such systems often result from the discretization of nonlinear partial differential equations. A projection-based model reduction framework is used where projection spaces are inferred from proper orthogonal decompositions of data-dependent correlation operators. The key contribution of the MPE method is to perform online computations efficiently by computing Galerkin projections over a restricted subset of the spatial domain. Quantitative criteria for optimally selecting such a spatial subset are proposed and the resulting optimization problem is solved using an efficient heuristic method. The effectiveness of the MPE method is demonstrated by applying it to a nonlinear computational fluid dynamic model of an industrial glass furnace. For this example, the Galerkin projection can be computed using only 25% of the spatial grid points without compromising the accuracy of the reduced model.

445 citations

Journal ArticleDOI
TL;DR: In this paper, an uncertainty quantification scheme was developed for the simulation of stochastic thermofluid processes, which relies on spectral representation of uncertainty using the polynomial chaos (PC) system.

435 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the construction and implementation of a stochastic Navier-Stokes solver, which combines a spectral uncertainty representation scheme with a finite difference projection method for flow simulation.

413 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
88% related
Differential equation
88K papers, 2M citations
88% related
Matrix (mathematics)
105.5K papers, 1.9M citations
86% related
Boundary value problem
145.3K papers, 2.7M citations
86% related
Partial differential equation
70.8K papers, 1.6M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202331
202279
2021153
2020209
2019182
2018207