scispace - formally typeset
Search or ask a question
Topic

Prolactin

About: Prolactin is a research topic. Over the lifetime, 22356 publications have been published within this topic receiving 609537 citations. The topic is also known as: lactotropin, & PRL,.


Papers
More filters
Journal ArticleDOI
TL;DR: The immediate osmoregulatory effects claimed for prolacti in vitro are questioned; however, under organ-culture conditions the action of the hormone is readily demonstrable.
Abstract: The actions of prolactin in hydromineral metabolism in all vertebrate classes are reviewed, and the impact of the studies on nonmammalian vertebrates in providing impetus for comparable research in mammals is emphasized. The teleost bladder is a model system for analyzing the interaction of prolactin and cortisol in transport processes; a parallelism is suggested between this model and the prolactin/cortisol regulation of ion and water movements during milk secretion. The immediate osmoregulatory effects claimed for prolacti in vitro are questioned; however, under organ-culture conditions the action of the hormone is readily demonstrable. Progress in the isolation of teleost prolactin and the role of osmotic factors in regulating prolactin secretion are briefly described.

145 citations

Journal ArticleDOI
TL;DR: D-Asp and NMDA are present endogenously in the rat and are involved in the modulation of PRL release, and experiments conducted on tissue homogenates confirm that D-AsP is the precursor of the NMDA and that the enzyme catalyzing this reaction is a methyltransferase.
Abstract: In this study, using an enzymatic HPLC method in combination with D-aspartate oxidase, we show that N-methyl-D-aspartate (NMDA) is present at nanomolar levels in rat nervous system and endocrine glands as a natural compound, and it is biosynthesized in vivo and in vitro. D-aspartate (D-Asp) is its natural precursor and also occurs as an endogenous compound. Among the endocrine glands, the highest quantities of D-Asp (78 +/- 12 nmol/g) and NMDA (8.4 +/- 1.2 nmol/g) occur in the adenohypophysis, whereas the hypothalamus represents the area of the nervous system where these amino acids are most abundant (55 +/- 9 and 5.6 +/- 1.1 nmol/g for D-Asp and NMDA, respectively). When D-Asp is administered to rats by ip injection, there is a significant uptake of D-Asp into the adenohypophysis and a significant increase in the concentration of NMDA in the adenohypophysis, hypothalamus and hippocampus, suggesting that D-Asp is an endogenous precursor for NMDA biosynthesis. Experiments conducted on tissue homogenates confirm that D-Asp is the precursor of the NMDA and that the enzyme catalyzing this reaction is a methyltransferase. S-adenosyl-L-methionine (SAM) is the methyl group donor. In vivo experiments consisting of ip injections of sodium D-aspartate show that this amino acid induced a significant serum PRL elevation and this effect is dose and time dependent. In vitro experiments conducted on isolated adenohypophysis or adenohypophysis coincubated with the hypothalamus, showed that the release of PRL is caused by a direct action of D-Asp on the pituitary gland and also mediated by the indirect action of NMDA on the hypothalamus. Then, the latter induces the release of a putative factor that in turn stimulates the adenohypophysis reinforcing the PRL release. In conclusion, our data suggest that D-Asp and NMDA are present endogenously in the rat and are involved in the modulation of PRL release.

145 citations

Journal ArticleDOI
TL;DR: The data suggest that GnRH plays a broad role in fish, depending on the species, by affecting not only gonadotropins and growth hormone, but also PRL.
Abstract: Three forms of gonadotropin-releasing hormone (GnRH) are isolated and identified here by chemical sequence analysis for one species of tilapia, Oreochromis niloticus, and by HPLC elution position for a second species of tilapia, O. mossambicus. Of the three GnRH forms in O. mossambicus, chicken GnRH-II (cGnRH-II) and sea bream GnRH (sbGnRH) are present in greater abundance in the brain and pituitary than salmon GnRH (sGnRH). These three native forms of GnRH are shown to stimulate the release of prolactin (PRL) from the rostral pars distalis (RPD) of the pituitary of O. mossambicus in vitro with the following order of potency: cGnRHII>sGnRH>sbGnRH. In addition, a mammalian GnRH analog stimulated the release of PRL from the pituitary RPD incubated in either iso-osmotic (320 mosmol/l) or hyperosmotic (355 mosmol/l) medium, the latter normally inhibiting PRL release. The response of the pituitary RPD to GnRH was augmented by co-incubation with testosterone or 17‚-estradiol. The eVects of GnRH on PRL release appear to be direct eVects on PRL cells because the RPD of tilapia contains a nearly homogeneous mass of PRL cells without intermixing of gonadotrophs. Our data suggest that GnRH plays a broad role in fish, depending on the species, by aVecting not only gonadotropins and growth hormone, but also PRL. Journal of Endocrinology (1997) 155, 121‐132

144 citations

Journal ArticleDOI
TL;DR: The novel hypothalamic peptide pituitary adenylate cyclase-activating polypeptide (PACAP-38) caused an increase in the release of GH, ACTH, LH and alpha-subunit and accumulation of intracellular cyclic AMP from dispersed rat anterior pituitsary cells in static culture for 24 h.
Abstract: We have demonstrated that the novel hypothalamic peptide pituitary adenylate cyclase-activating polypeptide (PACAP-38; 0.1-100 nmol/l) caused an increase in the release of GH, ACTH, LH and alpha-subunit and accumulation of intracellular cyclic AMP from dispersed rat anterior pituitary cells in static culture for 24 h. There were no significant effects on TSH or prolactin release over the same time-period. PACAP-38 (10 nmol/l) increased the release of GH by 1.3-fold (P less than 0.05), ACTH by 1.9-fold (P less than 0.05), LH by 3.5-fold (P less than 0.001) and alpha-subunit by 2.0-fold (P less than 0.005) and the accumulation of intracellular cyclic AMP by greater than 2-fold (P less than 0.001) after 24 h. However, the time-course for the effect of PACAP-38 (1 mmol/l) on hormone release and intracellular cyclic AMP levels showed a temporal dissociation. The effect of PACAP-38 on GH and ACTH levels did not reach significance until 24 h whereas the effect of PACAP-38 on LH and alpha-subunit release reached significance after 4 h implying a different mechanism of action for their release. To investigate the PACAP-induced secretion of LH and alpha-subunit further, we examined the effects of PACAP after down-regulation of protein kinase C (PKC). PACAP-38 at a dose maximal for the stimulation of LH and alpha-subunit release (10 nmol/l) added together with the PKC activator, 12-O-tetradecanoyl-phorbol-13-acetate (TPA; 0.1 mumol/l) had no greater effect on LH and alpha-subunit release than TPA alone over a 4 h incubation period.(ABSTRACT TRUNCATED AT 250 WORDS)

144 citations

Journal ArticleDOI
TL;DR: It is suggested that maternal protein restriction imposes changes in maternal levels of glucose, insulin, prolactin, progesterone, oestradiol and leptin; these changes could influence the programming of eventual adult disease in the developing fetus.
Abstract: Many adult diseases, including type 2 diabetes, hypertension and cardiovascular disease, are related to low birth weight. The mechanistic basis of this relationship is not known. To investigate the role of fetal undernutrition, we used a rat model of maternal protein restriction in which dams were fed a diet containing 80 g protein/kg (v. 200 g/kg in the control group) throughout gestation and lactation. Offspring were born smaller than controls and in adulthood developed diabetes, hyperinsulinaemia and tissue insulin resistance. To determine possible mechanisms of fetal programming, circulating levels of several hormones were measured in maternal plasma at gestational days 14, 17 and 21 and fetal plasma at gestational day 21. Several differences were noted at day 14, when glucose concentrations in maternal and feto-placental blood were raised significantly (P=0.04 and P=0.0001 respectively); insulin levels in the low-protein (LP) dams were raised (P=0.04), prolactin levels were raised (P=0.047) and progesterone levels were reduced (P=0.02). Circulating 17beta-oestradiol in the LP dams was raised by 35 % over those of the controls from day 17 to day 21 (P=0.008). A significant decrease in maternal leptin levels (P=0.004) was observed at gestation on day 21. Neither oestradiol nor leptin levels were altered in the fetal circulation at day 21. Maternal and fetal corticosterone levels were comparable with control levels, suggesting that they do not initiate the programming effects in this model. Our present results suggest that maternal protein restriction imposes changes in maternal levels of glucose, insulin, prolactin, progesterone, oestradiol and leptin; these changes could influence the programming of eventual adult disease in the developing fetus.

144 citations


Network Information
Related Topics (5)
Estrogen
40.7K papers, 1.7M citations
92% related
Thyroid
68.8K papers, 1.5M citations
84% related
Growth factor
34.3K papers, 2.1M citations
83% related
Insulin
124.2K papers, 5.1M citations
83% related
Receptor
159.3K papers, 8.2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023360
2022585
2021202
2020221
2019180
2018172