scispace - formally typeset
Search or ask a question
Topic

Propagule pressure

About: Propagule pressure is a research topic. Over the lifetime, 929 publications have been published within this topic receiving 53435 citations. The topic is also known as: introduction effort.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that the term ‘invasive’ should be used without any inference to environmental or economic impact, and terms like ‘pests’ and ‘weeds’ are suitable labels for the 50–80% of invaders that have harmful effects.
Abstract: . Much confusion exists in the English-language literature on plant invasions concerning the terms ‘naturalized’ and ‘invasive’ and their associated concepts. Several authors have used these terms in proposing schemes for conceptualizing the sequence of events from introduction to invasion, but often imprecisely, erroneously or in contradictory ways. This greatly complicates the formulation of robust generalizations in invasion ecology. Based on an extensive and critical survey of the literature we defined a minimum set of key terms related to a graphic scheme which conceptualizes the naturalization/invasion process. Introduction means that the plant (or its propagule) has been transported by humans across a major geographical barrier. Naturalization starts when abiotic and biotic barriers to survival are surmounted and when various barriers to regular reproduction are overcome. Invasion further requires that introduced plants produce reproductive offspring in areas distant from sites of introduction (approximate scales: > 100 m over 6 m/3 years for taxa spreading by roots, rhizomes, stolons or creeping stems). Taxa that can cope with the abiotic environment and biota in the general area may invade disturbed, seminatural communities. Invasion of successionally mature, undisturbed communities usually requires that the alien taxon overcomes a different category of barriers. We propose that the term ‘invasive’ should be used without any inference to environmental or economic impact. Terms like ‘pests’ and ‘weeds’ are suitable labels for the 50–80% of invaders that have harmful effects. About 10% of invasive plants that change the character, condition, form, or nature of ecosystems over substantial areas may be termed ‘transformers’.

3,516 citations

Journal ArticleDOI
TL;DR: Although restricted to few taxa, these studies reveal clear relationships between the characteristics of releases and the species involved, and the successful establishment and spread of invaders.
Abstract: Predicting which species are probable invaders has been a long-standing goal of ecologists, but only recently have quantitative methods been used to achieve such a goal. Although restricted to few taxa, these studies reveal clear relationships between the characteristics of releases and the species involved, and the successful establishment and spread of invaders. For example, the probability of bird establishment increases with the number of individuals released and the number of release events. Also, the probability of plant invasiveness increases if the species has a history of invasion and reproduces vegetatively. These promising quantitative approaches should be more widely applied to allow us to predict patterns of invading species more successfully.

2,698 citations

Journal ArticleDOI
TL;DR: Propagule pressure is proposed as a key element to understanding why some introduced populations fail to establish whereas others succeed and how the study of propagule pressure can provide an opportunity to tie together disparate research agendas within invasion ecology.
Abstract: Human-mediated species invasions are a significant component of current global environmental change. There is every indication that the rate at which locations are accumulating non-native species is accelerating as free trade and globalization advance. Thus, the need to incorporate predictive models in the assessment of invasion risk has become acute. However, finding elements of the invasion process that provide consistent explanatory power has proved elusive. Here, we propose propagule pressure as a key element to understanding why some introduced populations fail to establish whereas others succeed. In the process, we illustrate how the study of propagule pressure can provide an opportunity to tie together disparate research agendas within invasion ecology.

2,288 citations

Journal ArticleDOI
01 Jul 1999-Ecology
TL;DR: In this paper, the authors show that comparisons of invasibility between regions are impossible to make unless one can control for all of the variables that influence exotic richness, including the rates of immigration of species and the characteristics of the invading species themselves.
Abstract: With a simple model, I show that comparisons of invasibility between regions are impossible to make unless one can control for all of the variables besides invasibility that influence exotic richness, including the rates of immigration of species and the characteristics of the invading species themselves. Using data from the literature for 184 sites around the world, I found that nature reserves had one-half of the exotic fraction of sites outside reserves, and island sites had nearly three times the exotic fraction of mainland sites. However, the exotic fraction and the number of exotics were also dependent on site area, and this had to be taken into account to make valid comparisons between sites. The number of native species was used as a surrogate for site area and habitat diversity. Nearly 70% of the variation in the number of exotic species was accounted for by a multiple regression containing the following predictors: the number of native species, whether the site was an island or on the mainland, and whether or not it was a nature reserve. After controlling for scale, there were significant differences among biomes, but not continents, in their level of invasion. Multiple biome regions and temperate agricultural or urban sites were among the most invaded biomes, and deserts and savannas were among the least. However, there was considerable within-group variation in the mean degree of invasion. Scale-controlled analysis also showed that the New World is significantly more invaded than the Old World, but only when site native richness (probably a surrogate for habitat diversity) is factored out. Contrary to expectation, communities richer in native species had more, not fewer, exotics. For mainland sites, the degree of invasion increased with latitude, but there was no such relationship for islands. Although islands are more invaded than mainland sites, this is apparently not because of low native species richness, as the islands in this data set were no less rich in native species than were mainland sites of similar area. The number of exotic species in nature reserves increases with the number of visitors. However, it is difficult to draw conclusions about relative invasibility, invasion potential, or the roles of dispersal and disturbance from any of these results. Most of the observed patterns here and in the literature could potentially be explained by differences between regions in species properties, ecosystem properties, or propagule pressure.

1,919 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the links between the main drivers of globalization and biological invasions and examined state-of-the-art approaches to pathway risk assessment to illustrate new opportunities for managing invasive species.
Abstract: Summary 1 Humans have traded and transported alien species for millennia with two notable step-changes: the end of the Middle Ages and beginning of the Industrial Revolution. However, in recent decades the world has entered a new phase in the magnitude and diversity of biological invasions: the Era of Globalization. This Special Profile reviews the links between the main drivers of globalization and biological invasions and examines state-of-the-art approaches to pathway risk assessment to illustrate new opportunities for managing invasive species. 2 Income growth is a primary driver of globalization and a clear association exists between Gross Domestic Product and the richness of alien floras and faunas for many regions of the world. In many cases, the exposure of these economies to trade is highlighted by the significant role of merchandise imports in biological invasions, especially for island ecosystems. 3 Post-1950, technical and logistic improvements have accelerated the ease with which commodities are transported across the globe and hindered the traceability of goods and the ease of intercepting pests. New sea, land and air links in international trade and human transport have established novel pathways for the spread of alien species. Increasingly, the science advances underpinning invasive species management must move at the speed of commerce. 4 Increasing transport networks and demand for commodities have led to pathway risk assessments becoming the frontline in the prevention of biological invasions. The diverse routes of introduction arising from contaminant, stowaway, corridor and unaided pathways, in both aquatic and terrestrial biomes are complex. Nevertheless, common features enable comparable approaches to risk assessment. By bringing together spatial data on climate suitability, habitat availability and points of entry, as well a demographic models that include species dispersal (both natural and human-mediated) and measures of propagule pressure, it is possible to generate risk maps highlighting potential invasion hotspots that can inform prevention strategies. 5 Synthesis and applications. To date, most attempts to model pathways have focused on describing the likelihood of invader establishment. Few have modelled explicit management strategies such as optimal detection and inspection strategies and assessments of the effectiveness of different management measures. A future focus in these areas will ensure research informs response.

1,857 citations


Network Information
Related Topics (5)
Biodiversity
44.8K papers, 1.9M citations
87% related
Biological dispersal
30K papers, 1.2M citations
87% related
Habitat
25.2K papers, 825.7K citations
87% related
Species richness
61.6K papers, 2.1M citations
87% related
Species diversity
32.2K papers, 1.2M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202329
202260
202155
202050
201956
201873