scispace - formally typeset
Search or ask a question
Topic

Propulsion

About: Propulsion is a research topic. Over the lifetime, 24977 publications have been published within this topic receiving 200311 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This study reveals that the vehicles' operational constraints, such as initial acceleration and grade, can be met with minimum power rating if the power train can be operated mostly in the constant power region.
Abstract: There is a growing interest in electric and hybrid-electric vehicles due to environmental concerns. Efforts are directed toward developing an improved propulsion system for electric and hybrid-electric vehicles applications. This paper is aimed at developing the system design philosophies of electric and hybrid vehicle propulsion systems. The vehicles' dynamics are studied in an attempt to find an optimal torque-speed profile for the electric propulsion system. This study reveals that the vehicles' operational constraints, such as initial acceleration and grade, can be met with minimum power rating if the power train can be operated mostly in the constant power region. Several examples are presented to demonstrate the importance of the constant power operation. Operation of several candidate motors in the constant power region are also examined. Their behaviors are compared and conclusions are made.

451 citations

Journal ArticleDOI
TL;DR: In this paper, an assessment of the challenges of understanding basic physics through utilizing rotating detonations in aerospace platforms is provided, ranging from understanding the basic physics of the system to its feasibility.
Abstract: Rotating detonation engines (RDEs), also known as continuous detonation engines, have gained much worldwide interest lately. Such engines have huge potential benefits arising from their simplicity of design and manufacture, lack of moving parts, high thermodynamic efficiency and high rate of energy conversion that may be even more superior than pulse detonation engines, themselves the subject of great interest. However, due to the novelty of the concept, substantial work remains to demonstrate feasibility and bring the RDE to reality. An assessment of the challenges, ranging from understanding basic physics through utilizing rotating detonations in aerospace platforms, is provided.

451 citations

Book
01 Aug 1995
TL;DR: In this article, the authors present a detailed overview of the propulsion system design process of a nuclear and a hybrid rocket propulsion system, as well as a case study of the nuclear and hybrid propulsion systems.
Abstract: List of Authors and Editors Preface Chapter 1 Introduction to Space Propulsion 1.1 Rocket Fundamentals 1.2 The Design Process Chapter 2 Mission Analysis 2.1 Keplerian Orbits 2.2 Orbit Perturbations 2.3 Orbit Maneuvering 2.4 Launch Windows 2.5 Orbit Maintenance 2.6 Earth to Orbit Chapter 3 Thermodynamics of Fluid Flow 3.1 Mass Transfer 3.2 Thermodynamic Relations (Energy and Entropy) 3.3 Thrust Equations 3.4 Heat Addition 3.5 HEat Transfer 3.6 Design Example-Cold-Gas Thruster Chapter 4 Thermochemistry 4.1 The Chemical Heat Source: Bond Energy 4.2 Thermochemistry Basics 4.3 Products of Combustion 4.4 Flame Temperature: The Available-Heat Method 4.5 Chemical Kinetics: The Speed of the Chemical Reactions 4.6 Combustion of Liquids vs.Solids 4.7 Propellant Characteristics and Their Implications 4.8 Key Thermochemical Parameters: The Bottom Line Chapter 5 Liquid Rocket Propulsion Systems 5.1 History 5.2 Design Process 5.3 Preliminary Design Decisions 5.4 System Sizing, Design, and Trade-off 5.5 Case Study Chapter 6 Solid Rocket Motors 6.1 Background 6.2 Design Process 6.3 Preliminary Sizing 6.4 Solid Rocket Propellants 6.5 Performance Prediction 6.6 Case Study Chapter 7 Hybrid Rocket Propulsion Systems 7.1 History 7.2 Hybrid-Motor Ballistics 7.3 Design Process 7.4 Preliminary Design Decisions 7.5 Performance Estimate 7.6 Preliminary Component Design 7.7 Case Study Chapter 8 Nuclear Rocket Propulsion Systems 8.1 Introduction 8.2 Design Process 8.3 Preliminary Design Decisions 8.4 Size the Reactor 8.5 Size the Radiation Shield 8.6 Evaluate Vehicle Operation 8.7 Case Study Chapter 9 Electric Rocket Propulsion Systems 9.1 History and Status 9.2 Design Process 9.3 Specify the Mission 9.4 Select an Electric Thruster 9.5 Select Space Power 9.6 Assess System Performance 9.7 Evaluate the System 9.8 Case Study Chapter 10 Mission Design Case Study 10.1 Define Mission Requirements 10.2 Develop Criteria to Evaluate and Select a System 10.3 Develop Alternative Mission Concepts 10.4 Define the Vehicle System and Select Potential Technologies 10.5 Develop Preliminary Designs for the Propulsion System 10.6 Assess Designs and Configurations 10.7 Compare Designs and Choose the Best Option Chapter 11 Advanced Propulsion Systems 11.1 Air-Augmented Rockets 11.2 Rocket Advancements 11.3 Nonrocket Advancements 11.4 Interstellar Flight Appendix A Units and Conversions Factors Appendix B Thermochemical Data for Selected Propellants Appendix C Launch Vehicles and Staging Index

444 citations

Book
01 Jan 2011
TL;DR: In this article, the authors present a model and full-scale simulation of ship seakeeping using BEM for full-size ships in sea trials and simulate the effects of wave resistance and propulsion on ship motion.
Abstract: Introduction Overview of problems and approaches Model test and similarity laws Full scale tests Numerical approaches (Computational Fluid Dynamics) Basic equations, Basic techniques Applications. Propeller Flows: Propeller geometry and other basics, Propeller curves Numerical methods for propeller design Lifting line theory Lifting surface theory BEM for propellers Field methods Cavitation Experimental approach Propeller design procedure. Resistance and propulsion: Resistance and propulsion concepts Interaction between ship and propeller Decomposition of resistance Experimental approach Towing tanks and experimental set up Resistance test Method ITTC 1957 Method of Hughes-Prohaska Propulsion test Additional resistance under service conditions Simple design approaches CFD approaches for steady flow Wave resistance computations Viscous flow computations Problems for fast and unconventional ships. Ship Seakeeping: Introduction to seakeeping Experimental approaches (model and full-scale) Waves and seaway Airy waves (harmonic waves of small amplitude) Natural seaway Wind and seaway Wave climate Numerical prediction of ship seakeeping Overview of computational methods Strip method Rankine panel methods Problems for fast and unconventional ships Further quantities in regular waves Ship responses in stationary seaway Simulation methods Long-term distributions Slamming. Manoeuvring: Simulation of manoeuvring with known coefficients Coordinate systems and definitions Body forces and manoeuvring motions Linear motion equations CFD for manoeuvring Experimental approaches Manoeuvring tests for full-scale ships in sea trials Model tests Rudders Computation of body forces Slender-body theory Influence of heel Shallow-water effect Jet thrusters Stop manoeuvres. Boundary element methods: Green function formulation Integral equations Source elements Point source Regular first-order panel Jensen panel Higher-order panel Vortex elements Dipole elements Point dipole. Numerical examples for BEM: Two-dimensional body in infinite flow Theory Numerical implementation.

393 citations

MonographDOI
01 Jan 2006
TL;DR: A review of fundamentals of rocket propulsion can be found in this paper, along with a survey of real engines and their performance analysis, including Inlets, Nozzles, and Combustion Systems.
Abstract: Foreword * Preface * List of Symbols * Introduction * Review of Fundamentals * Rocket Propulsion * Aircraft Gas Turbine Engine * Parametric Cycle Analysis of Ideal Engines * Component Performance * Parametric Cycle Analysis of Real Engines * Engine Performance Analysis * Turbomachinery * Inlets, Nozzles, and Combustion Systems * Appendices * References * Homework Answers * Index.

348 citations


Network Information
Related Topics (5)
Control system
129K papers, 1.5M citations
79% related
Control theory
299.6K papers, 3.1M citations
77% related
Reynolds number
68.4K papers, 1.6M citations
77% related
Turbulence
112.1K papers, 2.7M citations
76% related
Optimal control
68K papers, 1.2M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,085
20222,061
2021739
20201,050
20191,194
20181,187