scispace - formally typeset
Search or ask a question
Topic

Proteasome

About: Proteasome is a research topic. Over the lifetime, 10986 publications have been published within this topic receiving 705609 citations. The topic is also known as: GO:0000502 & proteasome.


Papers
More filters
Journal ArticleDOI
05 Aug 2004-Nature
TL;DR: A novel ubiquitin ligase domain is defined and two sequential mechanisms by which A20 downregulates NF-κB signalling are identified, both of which participate in mediating a distinct regulatory effect.
Abstract: NF-kappaB transcription factors mediate the effects of pro-inflammatory cytokines such as tumour necrosis factor-alpha and interleukin-1beta. Failure to downregulate NF-kappaB transcriptional activity results in chronic inflammation and cell death, as observed in A20-deficient mice. A20 is a potent inhibitor of NF-kappaB signalling, but its mechanism of action is unknown. Here we show that A20 downregulates NF-kappaB signalling through the cooperative activity of its two ubiquitin-editing domains. The amino-terminal domain of A20, which is a de-ubiquitinating (DUB) enzyme of the OTU (ovarian tumour) family, removes lysine-63 (K63)-linked ubiquitin chains from receptor interacting protein (RIP), an essential mediator of the proximal TNF receptor 1 (TNFR1) signalling complex. The carboxy-terminal domain of A20, composed of seven C2/C2 zinc fingers, then functions as a ubiquitin ligase by polyubiquitinating RIP with K48-linked ubiquitin chains, thereby targeting RIP for proteasomal degradation. Here we define a novel ubiquitin ligase domain and identify two sequential mechanisms by which A20 downregulates NF-kappaB signalling. We also provide an example of a protein containing separate ubiquitin ligase and DUB domains, both of which participate in mediating a distinct regulatory effect.

1,749 citations

Journal ArticleDOI
TL;DR: FoxO3 controls the two major systems of protein breakdown in skeletal muscle, the ubiquitin-proteasomal and autophagic/lysosomal pathways, independently and is pointed to as potential therapeutic targets in muscle wasting disorders and other degenerative and neoplastic diseases in which autophagy is involved.

1,747 citations

Journal ArticleDOI
09 Apr 2009-Nature
TL;DR: MLN4924 disrupts cullin-RING ligase-mediated protein turnover leading to apoptotic death in human tumour cells by a new mechanism of action, the deregulation of S-phase DNA synthesis, suggesting that NAE inhibitors may hold promise for the treatment of cancer.
Abstract: The clinical development of an inhibitor of cellular proteasome function suggests that compounds targeting other components of the ubiquitin-proteasome system might prove useful for the treatment of human malignancies. NEDD8-activating enzyme (NAE) is an essential component of the NEDD8 conjugation pathway that controls the activity of the cullin-RING subtype of ubiquitin ligases, thereby regulating the turnover of a subset of proteins upstream of the proteasome. Substrates of cullin-RING ligases have important roles in cellular processes associated with cancer cell growth and survival pathways. Here we describe MLN4924, a potent and selective inhibitor of NAE. MLN4924 disrupts cullin-RING ligase-mediated protein turnover leading to apoptotic death in human tumour cells by a new mechanism of action, the deregulation of S-phase DNA synthesis. MLN4924 suppressed the growth of human tumour xenografts in mice at compound exposures that were well tolerated. Our data suggest that NAE inhibitors may hold promise for the treatment of cancer.

1,603 citations

Journal ArticleDOI
TL;DR: Findings strongly suggest that the hypoxia induced changes in HIF-1alpha stability and subsequent gene activation are mediated by redox-induced changes.

1,600 citations

Journal ArticleDOI
05 May 1995-Science
TL;DR: Lactacystin appears to modify covalently the highly conserved amino-terminal threonine of the mammalian proteasome subunit X (also called MB1), a close homolog of the LMP7 proteasom subunit encoded by the major histocompatibility complex and may have a catalytic role.
Abstract: Lactacystin is a Streptomyces metabolite that inhibits cell cycle progression and induces neurite outgrowth in a murine neuroblastoma cell line. Tritium-labeled lactacystin was used to identify the 20S proteasome as its specific cellular target. Three distinct peptidase activities of this enzyme complex (trypsin-like, chymotrypsin-like, and peptidylglutamyl-peptide hydrolyzing activities) were inhibited by lactacystin, the first two irreversibly and all at different rates. None of five other proteases were inhibited, and the ability of lactacystin analogs to inhibit cell cycle progression and induce neurite outgrowth correlated with their ability to inhibit the proteasome. Lactacystin appears to modify covalently the highly conserved amino-terminal threonine of the mammalian proteasome subunit X (also called MB1), a close homolog of the LMP7 proteasome subunit encoded by the major histocompatibility complex. This threonine residue may therefore have a catalytic role, and subunit X/MB1 may be a core component of an amino-terminal-threonine protease activity of the proteasome.

1,598 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
96% related
Transcription factor
82.8K papers, 5.4M citations
94% related
Regulation of gene expression
85.4K papers, 5.8M citations
93% related
Gene expression
113.3K papers, 5.5M citations
92% related
Cell culture
133.3K papers, 5.3M citations
92% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023839
2022851
2021416
2020443
2019446
2018405