scispace - formally typeset

Topic

Protein kinase B

About: Protein kinase B is a(n) research topic. Over the lifetime, 57216 publication(s) have been published within this topic receiving 2504863 citation(s). The topic is also known as: protein kinase Akt & Protein kinase B.


Papers
More filters
Journal ArticleDOI
19 Mar 1999-Cell
TL;DR: It is demonstrated that Akt also regulates the activity of FKHRL1, a member of the Forkhead family of transcription factors, which triggers apoptosis most likely by inducing the expression of genes that are critical for cell death, such as the Fas ligand gene.
Abstract: Survival factors can suppress apoptosis in a transcription-independent manner by activating the serine/ threonine kinase Akt, which then phosphorylates and inactivates components of the apoptotic machinery, including BAD and Caspase 9. In this study, we demonstrate that Akt also regulates the activity of FKHRL1, a member of the Forkhead family of transcription factors. In the presence of survival factors, Akt phosphorylates FKHRL1, leading to FKHRL1's association with 14-3-3 proteins and FKHRL1's retention in the cytoplasm. Survival factor withdrawal leads to FKHRL1 dephosphorylation, nuclear translocation, and target gene activation. Within the nucleus, FKHRL1 triggers apoptosis most likely by inducing the expression of genes that are critical for cell death, such as the Fas ligand gene.

6,219 citations

Journal ArticleDOI
17 Oct 1997-Cell
TL;DR: It is shown that growth factor activation of the PI3'K/Akt signaling pathway culminates in the phosphorylation of the BCL-2 family member BAD, thereby suppressing apoptosis and promoting cell survival.
Abstract: Growth factors can promote cell survival by activating the phosphatidylinositide-3′-OH kinase and its downstream target, the serine-threonine kinase Akt. However, the mechanism by which Akt functions to promote survival is not understood. We show that growth factor activation of the PI3′K/Akt signaling pathway culminates in the phosphorylation of the BCL-2 family member BAD, thereby suppressing apoptosis and promoting cell survival. Akt phosphorylates BAD in vitro and in vivo, and blocks the BAD-induced death of primary neurons in a site-specific manner. These findings define a mechanism by which growth factors directly inactivate a critical component of the cell-intrinsic death machinery.

5,721 citations

PatentDOI
27 Jan 2006-Science
Abstract: In certain aspects, the invention relates to methods for identifying compounds which modulate Akt activity mediated by the rictor-mTOR complex and methods for treating or preventing a disorder that is associated with aberrant Akt activity.

5,430 citations

Journal ArticleDOI
TL;DR: Small-molecule therapeutics that block PI3K signalling might deal a severe blow to cancer cells by blocking many aspects of the tumour-cell phenotype.
Abstract: One signal that is overactivated in a wide range of tumour types is the production of a phospholipid, phosphatidylinositol (3,4,5) trisphosphate, by phosphatidylinositol 3-kinase (PI3K) This lipid and the protein kinase that is activated by it — AKT — trigger a cascade of responses, from cell growth and proliferation to survival and motility, that drive tumour progression Small-molecule therapeutics that block PI3K signalling might deal a severe blow to cancer cells by blocking many aspects of the tumour-cell phenotype

5,421 citations

Journal ArticleDOI
29 Jun 2007-Cell
TL;DR: Those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration are discussed.
Abstract: The serine/threonine kinase Akt, also known as protein kinase B (PKB), is a central node in cell signaling downstream of growth factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt activation underlies the pathophysiological properties of a variety of complex diseases, including type-2 diabetes and cancer. Here, we review the molecular properties of Akt and the approaches used to characterize its true cellular targets. In addition, we discuss those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration.

5,088 citations


Network Information
Related Topics (5)
Apoptosis

115.4K papers, 4.8M citations

96% related
Signal transduction

122.6K papers, 8.2M citations

95% related
Cell culture

133.3K papers, 5.3M citations

93% related
Cellular differentiation

90.9K papers, 6M citations

90% related
Receptor

159.3K papers, 8.2M citations

90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202245
20214,007
20204,213
20194,279
20183,988
20173,778