scispace - formally typeset
Search or ask a question
Topic

Protein oxidation

About: Protein oxidation is a research topic. Over the lifetime, 6438 publications have been published within this topic receiving 332717 citations.


Papers
More filters
Book ChapterDOI
TL;DR: This chapter discusses methods to determine carbonyl content in oxidatively modified proteins and quantitated protein-bound pyruvoyl groups through formation of a Schiff base with p-aminobenzoic acid followed by reduction with cyanoborohydride.
Abstract: Publisher Summary This chapter discusses methods to determine carbonyl content in oxidatively modified proteins. The methods described are (1) reduction of the carbonyl group to an alcohol with tritiated borohydride; (2) reaction of the carbonyl group with 2,4-dinitrophenylhydrazine to form the 2,4-dinitrophenylhydrazone; (3) reaction of the carbonyl with fluorescein thiosemicarbazide to form the thiosemicarbazone; and (4) reaction of the carbonyl group with fluorescein amine to form a Schiff base followed by reduction to the secondary amine with cyanoborohydride. Van Poelje and Snell have also quantitated protein-bound pyruvoyl groups through formation of a Schiff base with p-aminobenzoic acid followed by reduction with cyanoborohydride. Although a systematic investigation has not appeared, this method should also be useful in detecting other protein-bound carbonyl groups. Carbonyl content of proteins is expressed as moles carbonyl/mole subunit for purified proteins of known molecular weight. For extracts, the results may be given as nanomoles carbonyl/milligram protein. For a protein having a molecular weight of 50,000, a carbonyl content of 1 mol carbonyl/mol protein corresponds to 20 nmol carbonyl/mg proteins.

5,408 citations

Journal ArticleDOI
TL;DR: An "oxidative response to inflammation" model is proposed as a means of reconciling the response-to-injury and oxidative modification hypotheses of atherosclerosis.
Abstract: This review focuses on the role of oxidative processes in atherosclerosis and its resultant cardiovascular events. There is now a consensus that atherosclerosis represents a state of heightened oxidative stress characterized by lipid and protein oxidation in the vascular wall. The oxidative modification hypothesis of atherosclerosis predicts that low-density lipoprotein (LDL) oxidation is an early event in atherosclerosis and that oxidized LDL contributes to atherogenesis. In support of this hypothesis, oxidized LDL can support foam cell formation in vitro, the lipid in human lesions is substantially oxidized, there is evidence for the presence of oxidized LDL in vivo, oxidized LDL has a number of potentially proatherogenic activities, and several structurally unrelated antioxidants inhibit atherosclerosis in animals. An emerging consensus also underscores the importance in vascular disease of oxidative events in addition to LDL oxidation. These include the production of reactive oxygen and nitrogen species by vascular cells, as well as oxidative modifications contributing to important clinical manifestations of coronary artery disease such as endothelial dysfunction and plaque disruption. Despite these abundant data however, fundamental problems remain with implicating oxidative modification as a (requisite) pathophysiologically important cause for atherosclerosis. These include the poor performance of antioxidant strategies in limiting either atherosclerosis or cardiovascular events from atherosclerosis, and observations in animals that suggest dissociation between atherosclerosis and lipoprotein oxidation. Indeed, it remains to be established that oxidative events are a cause rather than an injurious response to atherogenesis. In this context, inflammation needs to be considered as a primary process of atherosclerosis, and oxidative stress as a secondary event. To address this issue, we have proposed an "oxidative response to inflammation" model as a means of reconciling the response-to-injury and oxidative modification hypotheses of atherosclerosis.

2,518 citations

Journal ArticleDOI
28 Aug 1992-Science
TL;DR: The importance of protein oxidation in aging is supported by the observation that levels of oxidized proteins increase with animal age and may reflect age-related increases in rates of ROS generation, decreases in antioxidant activities, or losses in the capacity to degrade oxidized protein.
Abstract: A number of systems that generate oxygen free radicals catalyze the oxidative modification of proteins. Such modifications mark enzymes for degradation by cytosolic neutral alkaline proteases. Protein oxidation contributes to the pool of damaged enzymes, which increases in size during aging and in various pathological states. The age-related increase in amounts of oxidized protein may reflect the age-dependent accumulation of unrepaired DNA damage that, in a random manner, affects the concentrations or activities of numerous factors that govern the rates of protein oxidation and the degradation of oxidized protein.

2,498 citations

Book ChapterDOI
TL;DR: The chapter discusses the physiological importance of protein oxidation, and increases in carbonyl levels are examined in several diseases, such as rheumatoid arthritis, ischemia-reperfusion injury to heart muscles, and muscle damage caused by exhaustive exercise.
Abstract: Publisher Summary Oxygen radicals are implicated as an important cause of oxidative modification of proteins which may lead to their rapid degradation. Among the various oxidative modifications of amino acids in proteins, carbonyl formation may be an early marker for protein oxidation. This type of alteration is characterized as metal-catalyzed oxidation of proteins. The molecular mechanisms of this type of protein oxidation are discussed in this chapter. Redox cycling cations, such as Fe 2+ or Cu 2+ can bind to cation binding locations on proteins and with the aid of further attack by H 2 O 2 or O 2 can transform side-chain amine groups on several amino acids into carbonyls. The most likely amino acid residues to form carbonyl derivatives are lysine, arginine, proline, and histidine. Metal-catalyzed oxidation of proteins is not necessarily the only mechanism by which carbonyls are introduced into proteins. The chapter discusses the physiological importance of protein oxidation. Increases in carbonyl levels are examined in several diseases, such as rheumatoid arthritis, ischemia-reperfusion injury to heart muscles, and muscle damage caused by exhaustive exercise.

2,248 citations


Network Information
Related Topics (5)
Oxidative stress
86.5K papers, 3.8M citations
90% related
Programmed cell death
60.5K papers, 3.8M citations
81% related
Apoptosis
115.4K papers, 4.8M citations
81% related
Protein kinase A
68.4K papers, 3.9M citations
80% related
Inflammation
76.4K papers, 4M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202213
2021316
2020354
2019314
2018301
2017304