scispace - formally typeset
Search or ask a question
Topic

Protein secondary structure

About: Protein secondary structure is a research topic. Over the lifetime, 11483 publications have been published within this topic receiving 600670 citations. The topic is also known as: Protein Structure, Secondary.


Papers
More filters
Journal ArticleDOI
TL;DR: A set of simple and physically motivated criteria for secondary structure, programmed as a pattern‐recognition process of hydrogen‐bonded and geometrical features extracted from x‐ray coordinates is developed.
Abstract: For a successful analysis of the relation between amino acid sequence and protein structure, an unambiguous and physically meaningful definition of secondary structure is essential. We have developed a set of simple and physically motivated criteria for secondary structure, programmed as a pattern-recognition process of hydrogen-bonded and geometrical features extracted from x-ray coordinates. Cooperative secondary structure is recognized as repeats of the elementary hydrogen-bonding patterns “turn” and “bridge.” Repeating turns are “helices,” repeating bridges are “ladders,” connected ladders are “sheets.” Geometric structure is defined in terms of the concepts torsion and curvature of differential geometry. Local chain “chirality” is the torsional handedness of four consecutive Cα positions and is positive for right-handed helices and negative for ideal twisted β-sheets. Curved pieces are defined as “bends.” Solvent “exposure” is given as the number of water molecules in possible contact with a residue. The end result is a compilation of the primary structure, including SS bonds, secondary structure, and solvent exposure of 62 different globular proteins. The presentation is in linear form: strip graphs for an overall view and strip tables for the details of each of 10.925 residues. The dictionary is also available in computer-readable form for protein structure prediction work.

14,077 citations

Journal ArticleDOI
TL;DR: Together, these backbone and side chain modifications (hereafter called ff14SB) not only better reproduced their benchmarks, but also improved secondary structure content in small peptides and reproduction of NMR χ1 scalar coupling measurements for proteins in solution.
Abstract: Molecular mechanics is powerful for its speed in atomistic simulations, but an accurate force field is required. The Amber ff99SB force field improved protein secondary structure balance and dynamics from earlier force fields like ff99, but weaknesses in side chain rotamer and backbone secondary structure preferences have been identified. Here, we performed a complete refit of all amino acid side chain dihedral parameters, which had been carried over from ff94. The training set of conformations included multidimensional dihedral scans designed to improve transferability of the parameters. Improvement in all amino acids was obtained as compared to ff99SB. Parameters were also generated for alternate protonation states of ionizable side chains. Average errors in relative energies of pairs of conformations were under 1.0 kcal/mol as compared to QM, reduced 35% from ff99SB. We also took the opportunity to make empirical adjustments to the protein backbone dihedral parameters as compared to ff99SB. Multiple sm...

6,367 citations

Book ChapterDOI
TL;DR: The chapter reviews that the denaturation is a process in which the spatial arrangement of the polypeptide chains within the molecule is changed from that typical of the native protein to a more disordered arrangement.
Abstract: Publisher Summary This chapter explores that the changes that take place in the protein molecules during denaturation constitute one of the most interesting and complex classes of reactions that can be found either in nature or in the laboratory These reactions are important because of the information they can provide about the more intimate details of protein structure and function They are also significant because they challenge the chemist with a difficult area for the application of chemical principles The chapter reviews that the denaturation is a process in which the spatial arrangement of the polypeptide chains within the molecule is changed from that typical of the native protein to a more disordered arrangement The chapter also discusses the classification of protein structures: primary, secondary, and tertiary structures The primary structure is that expressed by the structural chemical formula and depends entirely on the chemical valence bonds that the classical organic chemist would write down for the protein molecule The secondary structure is the configuration of the polypeptide chain that results from the satisfaction of the hydrogen bonding potential between the peptide N-H and C=O groups The tertiary structure is the pattern according to which the secondary structures are packed together within the native protein molecule The term “denaturation” as used in this chapter is indented to include changes in both the secondary and tertiary structures

4,528 citations

Journal ArticleDOI
TL;DR: Although empirical predictions based on larger numbers of known protein structure tend to be more accurate than those based on a limited sample, the improvement in accuracy is not dramatic, suggesting that the accuracy of current empirical predictive methods will not be substantially increased simply by the inclusion of more data from additional protein structure determinations.

4,522 citations

Journal ArticleDOI
TL;DR: The algorithm is shown to be at least as good as, and usually superior to, the reported prediction methods assessed in the same way and the implication in protein folding is discussed.

4,360 citations


Network Information
Related Topics (5)
Protein structure
42.3K papers, 3M citations
97% related
Binding site
48.1K papers, 2.5M citations
93% related
Peptide sequence
84.1K papers, 4.3M citations
92% related
DNA
107.1K papers, 4.7M citations
88% related
Transcription (biology)
56.5K papers, 2.9M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202384
2022218
2021210
2020220
2019219
2018191