scispace - formally typeset
Search or ask a question
Topic

Protein tyrosine phosphatase

About: Protein tyrosine phosphatase is a research topic. Over the lifetime, 12873 publications have been published within this topic receiving 814414 citations. The topic is also known as: PTPase & tyrosylprotein phosphatase.


Papers
More filters
Journal ArticleDOI
28 Mar 1997-Science
TL;DR: The PTEN product has a protein tyrosine phosphatase domain and extensive homology to tensin, a protein that interacts with actin filaments at focal adhesions as discussed by the authors.
Abstract: Mapping of homozygous deletions on human chromosome 10q23 has led to the isolation of a candidate tumor suppressor gene, PTEN, that appears to be mutated at considerable frequency in human cancers. In preliminary screens, mutations of PTEN were detected in 31% (13/42) of glioblastoma cell lines and xenografts, 100% (4/4) of prostate cancer cell lines, 6% (4/65) of breast cancer cell lines and xenografts, and 17% (3/18) of primary glioblastomas. The predicted PTEN product has a protein tyrosine phosphatase domain and extensive homology to tensin, a protein that interacts with actin filaments at focal adhesions. These homologies suggest that PTEN may suppress tumor cell growth by antagonizing protein tyrosine kinases and may regulate tumor cell invasion and metastasis through interactions at focal adhesions.

4,927 citations

Journal ArticleDOI
TL;DR: The ability of cells to survey the mechanical properties of their surrounding environment is demonstrated and the possible involvement of both protein tyrosine phosphorylation and myosin-generated cortical forces in this process is suggested.
Abstract: Responses of cells to mechanical properties of the adhesion substrate were examined by culturing normal rat kidney epithelial and 3T3 fibroblastic cells on a collagen-coated polyacrylamide substrate that allows the flexibility to be varied while maintaining a constant chemical environment. Compared with cells on rigid substrates, those on flexible substrates showed reduced spreading and increased rates of motility or lamellipodial activity. Microinjection of fluorescent vinculin indicated that focal adhesions on flexible substrates were irregularly shaped and highly dynamic whereas those on firm substrates had a normal morphology and were much more stable. Cells on flexible substrates also contained a reduced amount of phosphotyrosine at adhesion sites. Treatment of these cells with phenylarsine oxide, a tyrosine phosphatase inhibitor, induced the formation of normal, stable focal adhesions similar to those on firm substrates. Conversely, treatment of cells on firm substrates with myosin inhibitors 2,3-butanedione monoxime or KT5926 caused the reduction of both vinculin and phosphotyrosine at adhesion sites. These results demonstrate the ability of cells to survey the mechanical properties of their surrounding environment and suggest the possible involvement of both protein tyrosine phosphorylation and myosin-generated cortical forces in this process. Such response to physical parameters likely represents an important mechanism of cellular interaction with the surrounding environment within a complex organism.

3,013 citations

Journal ArticleDOI
27 Jan 1995-Cell
TL;DR: Although the use of PP inhibitors shows that there is significant basal PP activity in cells, it has become apparent that the activities of PPs are regulated in a sophisticated manner by a combination of targeting and regulatory subunits and by specific inhibitors.

2,863 citations

Journal ArticleDOI
02 Oct 1998-Cell
TL;DR: The results show that PTEN may exert its role as a tumor suppressor by negatively regulating the PI3'K/PKB/Akt signaling pathway.

2,482 citations

Journal ArticleDOI
05 Mar 1999-Science
TL;DR: In this article, the mouse homolog of the gene encoding PTP-1B yielded healthy mice that, in the fed state, had blood glucose concentrations that were slightly lower and concentrations of circulating insulin that were one-half those of their PTP−1B+/+ littermates.
Abstract: Protein tyrosine phosphatase–1B (PTP-1B) has been implicated in the negative regulation of insulin signaling. Disruption of the mouse homolog of the gene encoding PTP-1B yielded healthy mice that, in the fed state, had blood glucose concentrations that were slightly lower and concentrations of circulating insulin that were one-half those of their PTP-1B+/+ littermates. The enhanced insulin sensitivity of the PTP-1B−/− mice was also evident in glucose and insulin tolerance tests. The PTP-1B−/− mice showed increased phosphorylation of the insulin receptor in liver and muscle tissue after insulin injection in comparison to PTP-1B+/+ mice. On a high-fat diet, the PTP-1B−/− and PTP-1B+/− mice were resistant to weight gain and remained insulin sensitive, whereas the PTP-1B+/+ mice rapidly gained weight and became insulin resistant. These results demonstrate that PTP-1B has a major role in modulating both insulin sensitivity and fuel metabolism, thereby establishing it as a potential therapeutic target in the treatment of type 2 diabetes and obesity.

2,101 citations


Network Information
Related Topics (5)
Signal transduction
122.6K papers, 8.2M citations
94% related
Receptor
159.3K papers, 8.2M citations
91% related
Transcription factor
82.8K papers, 5.4M citations
90% related
Cellular differentiation
90.9K papers, 6M citations
90% related
Regulation of gene expression
85.4K papers, 5.8M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023201
2022232
2021185
2020202
2019186
2018213